Sharp bounds of the zeroth-order general Randic index of bicyclic graphs with given pendent vertices

被引:4
|
作者
Pan, Xiang-Feng [1 ]
Lv, Ning-Ning [1 ,2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[2] Anhui Xinhua Univ, Dept Publ Courses, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Bicyclic graph; Zeroth-order general Randic index; Pendent vertex; Sharp bound; UNICYCLE GRAPHS; MAXIMUM; M)-GRAPHS; SMALLEST; MINIMUM; (N;
D O I
10.1016/j.dam.2010.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph and alpha be a given real number. The zeroth-order general Randic index of R-0(alpha) (G) is defined as Sigma(nu is an element of v(G))[dG(nu)](alpha), where d(G)(nu) denotes the degree of the vertex nu of G. In this paper, for any alpha(not equal 0, 1), we give sharp bounds of the zeroth-order general Bandit index R-0(alpha) of all bicyclic graphs with n vertices and k pendent vertices. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 245
页数:6
相关论文
共 50 条
  • [41] Sharp bounds for the Randic index of graphs with given minimum and maximum degree
    Suil, O.
    Shi, Yongtang
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 111 - 115
  • [42] General Randic index of unicyclic graphs with given number of pendant vertices
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE MATHEMATICS LETTERS, 2022, 8 : 83 - 88
  • [43] On the Bounds of Zeroth-Order General RandicIndex
    Matejic, Marjan
    Altindag, Erife Burcu Bozkurt
    Milovanovic, Emina
    Milovanovic, Igor
    FILOMAT, 2022, 36 (18) : 6443 - 6456
  • [44] SHARP BOUNDS FOR THE GENERAL RANDIC INDEX OF TREES WITH GIVEN DEGREE SEQUENCES
    Su, Guifu
    Rao, Gang
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 23 (01): : 25 - 38
  • [45] Maximally edge-connected graphs and Zeroth-order general Randic index for 0 < α < 1
    Su, Guifu
    Xiong, Liming
    Su, Xiaofeng
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 261 - 268
  • [46] Sharp bounds for the general Randic index
    Li, XL
    Yang, YT
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (51) : 155 - 166
  • [47] On zeroth-order general Randić index of conjugated unicyclic graphs
    Hongbo Hua
    Maolin Wang
    Hongzhuan Wang
    Journal of Mathematical Chemistry, 2008, 43 : 737 - 748
  • [48] Super-Edge-Connectivity and Zeroth-Order Randic Index
    He, Zhi-Hong
    Lu, Mei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2019, 7 (04) : 615 - 628
  • [49] SUPER EDGE-CONNECTIVITY AND ZEROTH-ORDER RANDIC INDEX
    He, Zhihong
    Lu, Mei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (04) : 971 - 984
  • [50] Sharp lower bounds for the general Randic index of trees with a given size of matching
    Pan, XF
    Liu, HQ
    Xu, JM
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2005, 54 (02) : 465 - 480