Sharp bounds of the zeroth-order general Randic index of bicyclic graphs with given pendent vertices

被引:4
|
作者
Pan, Xiang-Feng [1 ]
Lv, Ning-Ning [1 ,2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[2] Anhui Xinhua Univ, Dept Publ Courses, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Bicyclic graph; Zeroth-order general Randic index; Pendent vertex; Sharp bound; UNICYCLE GRAPHS; MAXIMUM; M)-GRAPHS; SMALLEST; MINIMUM; (N;
D O I
10.1016/j.dam.2010.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph and alpha be a given real number. The zeroth-order general Randic index of R-0(alpha) (G) is defined as Sigma(nu is an element of v(G))[dG(nu)](alpha), where d(G)(nu) denotes the degree of the vertex nu of G. In this paper, for any alpha(not equal 0, 1), we give sharp bounds of the zeroth-order general Bandit index R-0(alpha) of all bicyclic graphs with n vertices and k pendent vertices. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 245
页数:6
相关论文
共 50 条