ON THE MINIMAL DRIFT FOR RECURRENCE IN THE FROG MODEL ON d-ARY TREES

被引:3
|
作者
Guo, Chengkun [1 ]
Tang, Si [1 ]
Wei, Ningxi [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
来源
ANNALS OF APPLIED PROBABILITY | 2022年 / 32卷 / 04期
关键词
Frog model; recurrence; generating function; recursion; CRITICAL PROBABILITY; TRANSIENCE;
D O I
10.1214/21-AAP1755
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the recurrence property of one-per-site frog model FM(d, p) on a d-ary tree with drift parameter p is an element of [0, 1], which determines the bias of frogs' random walks. In this model, active frogs move toward the root with probability p or otherwise move to a uniformly chosen child vertex. Whenever a site is visited for the first time, a new active frog is introduced at the site. We are interested in the minimal drift p(d) so that the frog model is recurrent. Using a coupling argument together with a recursive construction of two series of polynomials involved in the generating functions, we prove that for all d >= 2, p(d) <= 1/3, achieving the best, universal upper bound predicted by the monotonicity conjecture.
引用
收藏
页码:3004 / 3026
页数:23
相关论文
共 50 条
  • [31] The pancyclic properties of d-ary n-dimensional cube
    Li, Zhaoxiang
    ARS COMBINATORIA, 2018, 140 : 135 - 148
  • [32] On VLSI decompositions for d-ary de Bruijn graphs (Extended abstract)
    Yamada, T
    Kawakita, H
    Nishiyama, T
    Ueno, S
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1358 - 1361
  • [33] GENERALIZED HILTON CONSTRUCTION FOR EMBEDDING D-ARY QUASI-GROUPS
    CSIMA, J
    DISCRETE MATHEMATICS, 1986, 58 (02) : 195 - 197
  • [34] Solving Stochastic Root-Finding with Adaptive d-ary Search
    Yazidi, Anis
    Oommen, B. John
    2015 IEEE INTERNATIONAL CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2015,
  • [35] The d-deap: a fast and simple cache-aligned d-ary deap
    Jung, H
    INFORMATION PROCESSING LETTERS, 2005, 93 (02) : 63 - 67
  • [36] Extending selection learning toward fixed-length d-ary strings
    Berny, A
    ARTFICIAL EVOLUTION, 2002, 2310 : 54 - 64
  • [37] Every Steiner Triple System Contains an Almost Spanning d-Ary Hypertree
    Arman, Andrii
    Rodl, Vojtech
    Sales, Marcelo Tadeu
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [38] On the Cross-Correlation Distribution of d-Ary Generalized Legendre-Sidelnikov Sequences
    KE Pinhui
    YE Zhifan
    ZHANG Shengyuan
    CHANG Zuling
    ChineseJournalofElectronics, 2018, 27 (02) : 287 - 291
  • [39] D-Ary Cuckoo Filter: A Space Efficient Data Structure for Set Membership Lookup
    Xie, Zhuohan
    Ding, Wencheng
    Wang, Hongya
    Xiao, Yingyuan
    Liu, Zhenyu
    2017 IEEE 23RD INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2017, : 190 - 197
  • [40] On the Cross-Correlation Distribution of d-Ary Generalized Legendre-Sidelnikov Sequences
    Ke Pinhui
    Ye Zhifan
    Zhang Shengyuan
    Chang Zuling
    CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (02) : 287 - 291