ON THE MINIMAL DRIFT FOR RECURRENCE IN THE FROG MODEL ON d-ARY TREES

被引:3
|
作者
Guo, Chengkun [1 ]
Tang, Si [1 ]
Wei, Ningxi [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
来源
ANNALS OF APPLIED PROBABILITY | 2022年 / 32卷 / 04期
关键词
Frog model; recurrence; generating function; recursion; CRITICAL PROBABILITY; TRANSIENCE;
D O I
10.1214/21-AAP1755
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the recurrence property of one-per-site frog model FM(d, p) on a d-ary tree with drift parameter p is an element of [0, 1], which determines the bias of frogs' random walks. In this model, active frogs move toward the root with probability p or otherwise move to a uniformly chosen child vertex. Whenever a site is visited for the first time, a new active frog is introduced at the site. We are interested in the minimal drift p(d) so that the frog model is recurrent. Using a coupling argument together with a recursive construction of two series of polynomials involved in the generating functions, we prove that for all d >= 2, p(d) <= 1/3, achieving the best, universal upper bound predicted by the monotonicity conjecture.
引用
收藏
页码:3004 / 3026
页数:23
相关论文
共 50 条
  • [21] Critical drift estimates for the frog model on trees
    Bailey, Emma
    Junge, Matthew
    Liu, Jiaqi
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [22] DETERMINISTIC QUANTUM DISTRIBUTION OF A d-ARY KEY
    Eusebi, A.
    Mancini, S.
    QUANTUM INFORMATION & COMPUTATION, 2009, 9 (11-12) : 950 - 962
  • [23] Deterministic quantum distribution of A d-ary key
    Eusebi, A.
    Mancini, S.
    Quantum Information and Computation, 2009, 9 (11-12): : 0950 - 0962
  • [24] EMBEDDING PARTIAL IDEMPOTENT D-ARY QUASIGROUPS
    CSIMA, J
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 80 (02) : 351 - 357
  • [25] New bounds on D-ary optimal codes
    Navarro, G
    Brisaboa, N
    INFORMATION PROCESSING LETTERS, 2005, 96 (05) : 178 - 184
  • [26] Improved critical drift estimates for the frog model on trees
    Mathews Jr, Poly
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29
  • [27] D-ary bounded-length Huffman coding
    Baer, Michael B.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 896 - 900
  • [28] A LOWER BOUND ON THE REDUNDANCY OF D-ARY HUFFMAN CODES
    GOLIC, JD
    OBRADOVIC, MM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) : 910 - 911
  • [29] Decycling d-ary n-dimensional Cubes
    Gao, Liqing
    Wang, Jian
    UTILITAS MATHEMATICA, 2020, 114 : 127 - 136
  • [30] Analysis of d-ARY tree algorithms with successive interference cancellation
    Vogel, Quirin
    Deshpande, Yash
    Stefanovic, Cedomir
    Kellerer, Wolfgang
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 1075 - 1105