ON THE MINIMAL DRIFT FOR RECURRENCE IN THE FROG MODEL ON d-ARY TREES

被引:3
|
作者
Guo, Chengkun [1 ]
Tang, Si [1 ]
Wei, Ningxi [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
来源
ANNALS OF APPLIED PROBABILITY | 2022年 / 32卷 / 04期
关键词
Frog model; recurrence; generating function; recursion; CRITICAL PROBABILITY; TRANSIENCE;
D O I
10.1214/21-AAP1755
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the recurrence property of one-per-site frog model FM(d, p) on a d-ary tree with drift parameter p is an element of [0, 1], which determines the bias of frogs' random walks. In this model, active frogs move toward the root with probability p or otherwise move to a uniformly chosen child vertex. Whenever a site is visited for the first time, a new active frog is introduced at the site. We are interested in the minimal drift p(d) so that the frog model is recurrent. Using a coupling argument together with a recursive construction of two series of polynomials involved in the generating functions, we prove that for all d >= 2, p(d) <= 1/3, achieving the best, universal upper bound predicted by the monotonicity conjecture.
引用
收藏
页码:3004 / 3026
页数:23
相关论文
共 50 条
  • [1] Inducibility of d-ary trees
    Czabarka, Eva
    Dossou-Olory, Audace A. V.
    Szekely, Laszlo A.
    Wagner, Stephan
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [2] HYBRID d-ARY TREES AND THEIR GENERALIZATION
    Hong, SeoungJi
    Park, SeungKyung
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 229 - 235
  • [3] Further results on the inducibility of d-ary trees
    Dossou-Olory, Audace A. V.
    Wagner, Stephan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 81 : 1 - 24
  • [4] Growing Random Uniform d-ary Trees
    Jean-François Marckert
    Annals of Combinatorics, 2023, 27 : 51 - 66
  • [5] Growing Random Uniform d-ary Trees
    Marckert, Jean-Francois
    ANNALS OF COMBINATORICS, 2023, 27 (01) : 51 - 66
  • [6] Optimal broadcasting in the back to back d-ary trees
    Barth, D
    INFORMATION PROCESSING LETTERS, 1996, 59 (02) : 85 - 89
  • [7] Bandwidth anf cutwidth of the mesh of d-ary trees
    Lect Notes Comput Sci, (243):
  • [8] The first Zagreb and forgotten topological indices of d-ary trees
    Kazemi, Ramin
    Behtoei, Ali
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (04): : 603 - 611
  • [9] Cutwidth of the r-dimensional mesh of d-ary trees
    Vrto, I
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2000, 34 (06): : 515 - 519
  • [10] A New Property of Hamming Graphs and Mesh of d-ary Trees
    Bretto, Alain
    Jaulin, Cerasela
    Gillibert, Luc
    Laget, Bernard
    COMPUTER MATHEMATICS, 2008, 5081 : 139 - +