Two-dimensional MHD equilibria of diamagnetic bubble in gas-dynamic trap

被引:7
|
作者
Khristo, M. S. [1 ,2 ]
Beklemishev, D. [1 ,2 ]
机构
[1] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
plasma equilibrium; plasma transport; high-beta plasma; gas-dynamic trap; diamagnetic confinement; numerical simulation; FINITE LARMOR RADIUS; MAGNETIC HOLES; PLASMA; BETA; CONFINEMENT; STABILITY; WAVES; MODE;
D O I
10.1088/1361-6587/ac8616
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This article presents a magnetohydrodynamic (MHD) two-dimensional numerical model of diamagnetic bubble equilibria in an axisymmetric open trap. The theoretical model consists of the Grad-Shafranov equilibrium equation and the transport equation obtained within the resistive single-fluid MHDs with isotropic pressure. Found are the numerical solutions corresponding to the diamagnetic confinement mode. In particular, the equilibria of the diamagnetic bubble in the gas-dynamic multimirror trap are calculated. We investigate the effect of magnetic field corrugation on the equilibrium; the corrugation of the vacuum field is shown to lead to a rather moderate corrugation of the bubble boundary if the period of corrugation is sufficiently small. A valuable numerical result is the distribution of the diamagnetic field, which would be useful for optimizing the position of the wall-stabilization plates.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effect of rotation on plasma stability in the gas-dynamic trap
    Beklemishev, A. D.
    Chaschin, M. S.
    PLASMA PHYSICS REPORTS, 2008, 34 (05) : 422 - 430
  • [32] FLUTE INSTABILITY OF PLASMA IN A GAS-DYNAMIC TRAP.
    Nagornyj, V.P.
    Ryutov, D.D.
    Stupakov, G.V.
    1600, (24):
  • [33] Kinetic instabilities in two-isotopic plasma in the gas-dynamic trap magnetic mirror
    Shmigelsky, Evgeniy A.
    Meyster, Andrey K.
    Chernoshtanov, Ivan S.
    Lizunov, Andrej A.
    Solomakhin, Alexander L.
    Yakovlev, Dmitry V.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (06)
  • [34] ELECTRODE AND GAS-DYNAMIC EFFECTS IN A LARGE NONEQUILIBRIUM MHD GENERATOR
    ZAUDERER, B
    TATE, E
    AIAA JOURNAL, 1973, 11 (02) : 149 - 155
  • [35] THE RISE AND DISTORTION OF A TWO-DIMENSIONAL GAS BUBBLE IN AN INVISCID LIQUID
    BAKER, GR
    MOORE, DW
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (09): : 1451 - 1459
  • [36] Effect of differential rotation on plasma stability in the Gas-dynamic trap
    Beklemishev, AD
    Chaschin, MS
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (1T) : 279 - 281
  • [37] NOVOSIBIRSK PROJECT OF GAS-DYNAMIC MULTIPLE-MIRROR TRAP
    Beklemishev, A.
    Anikeev, A.
    Astrelin, V.
    Bagryansky, P.
    Burdakov, A.
    Davydenko, V.
    Gavrilenko, D.
    Ivanov, A.
    Ivanov, I.
    Ivantsivsky, M.
    Kandaurov, I.
    Polosatkin, S.
    Postupaev, V.
    Sinitsky, S.
    Shoshin, A.
    Timofeev, I.
    Tsidulko, Yu
    FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (1T) : 46 - 51
  • [38] The Draining of a two-dimensional bubble
    P. D. Howell
    Journal of Engineering Mathematics, 1999, 35 : 251 - 272
  • [39] The draining of a two-dimensional bubble
    Howell, PD
    JOURNAL OF ENGINEERING MATHEMATICS, 1999, 35 (03) : 251 - 272
  • [40] The software components of the automation system of the gas-dynamic trap facility
    Stepanov, DN
    Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Automation, Control, and Applications, 2005, : 138 - 141