Two-dimensional MHD equilibria of diamagnetic bubble in gas-dynamic trap

被引:7
|
作者
Khristo, M. S. [1 ,2 ]
Beklemishev, D. [1 ,2 ]
机构
[1] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
plasma equilibrium; plasma transport; high-beta plasma; gas-dynamic trap; diamagnetic confinement; numerical simulation; FINITE LARMOR RADIUS; MAGNETIC HOLES; PLASMA; BETA; CONFINEMENT; STABILITY; WAVES; MODE;
D O I
10.1088/1361-6587/ac8616
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This article presents a magnetohydrodynamic (MHD) two-dimensional numerical model of diamagnetic bubble equilibria in an axisymmetric open trap. The theoretical model consists of the Grad-Shafranov equilibrium equation and the transport equation obtained within the resistive single-fluid MHDs with isotropic pressure. Found are the numerical solutions corresponding to the diamagnetic confinement mode. In particular, the equilibria of the diamagnetic bubble in the gas-dynamic multimirror trap are calculated. We investigate the effect of magnetic field corrugation on the equilibrium; the corrugation of the vacuum field is shown to lead to a rather moderate corrugation of the bubble boundary if the period of corrugation is sufficiently small. A valuable numerical result is the distribution of the diamagnetic field, which would be useful for optimizing the position of the wall-stabilization plates.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Two-dimensional quantum gas in a hybrid surface trap
    Gillen, J. I.
    Bakr, W. S.
    Peng, A.
    Unterwaditzer, P.
    Foelling, S.
    Greiner, M.
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [22] TWO-DIMENSIONAL GAS-DYNAMIC MODELS OF POLAR-CAP ACCRETION ONTO MAGNETIZED NEUTRON STARS
    KLEIN, RI
    ARONS, J
    LEA, SM
    AIP CONFERENCE PROCEEDINGS, 1984, (115) : 235 - 242
  • [23] Antenna for electron component heating in the gas-dynamic trap
    Moiseenko, VE
    Ivanov, AA
    Anikeev, AV
    Bagryansky, PA
    RADIO FREQUENCY POWER IN PLASMAS, 1997, (403): : 479 - 482
  • [24] Longitudinal confinement of particles and energy in a gas-dynamic trap
    Anikeev, AV
    Bagryansky, PA
    Kuznetsov, GI
    Stupishin, NV
    PLASMA PHYSICS REPORTS, 1999, 25 (10) : 775 - 782
  • [25] Effect of rotation on plasma stability in the gas-dynamic trap
    A. D. Beklemishev
    M. S. Chaschin
    Plasma Physics Reports, 2008, 34 : 422 - 430
  • [26] Gas-dynamic trap: an overview of the concept and experimental results
    Ivanov, A. A.
    Prikhodko, V. V.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (06)
  • [27] Gas-Dynamic Trap experiment: Status and perspectives.
    Ivanov, AA
    Karpushov, AN
    Lotov, KV
    FUSION TECHNOLOGY, 1999, 35 (1T): : 107 - 111
  • [28] Divertor for a steady-state gas-dynamic trap
    Kotelnikov, I. A.
    Ivanov, A. A.
    Yakovlev, D., V
    Chen, Z.
    Zeng, Q.
    NUCLEAR FUSION, 2020, 60 (01)
  • [29] Gas-Dynamic Multiple-Mirror Trap GDMT
    Skovorodin, D. I.
    Chernoshtanov, I. S.
    Amirov, V. Kh.
    Astrelin, V. T.
    Bagryanskii, P. A.
    Beklemishev, A. D.
    Burdakov, A. V.
    Gorbovskii, A. I.
    Kotel'nikov, I. A.
    Magommedov, E. M.
    Polosatkin, S. V.
    Postupaev, V. V.
    Prikhod'ko, V. V.
    Savkin, V. Ya.
    Soldatkina, E. I.
    Solomakhin, A. L.
    Sorokin, A. V.
    Sudnikov, A. V.
    Khristo, M. S.
    Shiyankov, S. V.
    Yakovlev, D. V.
    Shcherbakov, V. I.
    PLASMA PHYSICS REPORTS, 2023, 49 (09) : 1039 - 1086
  • [30] Gas-Dynamic Multiple-Mirror Trap GDMT
    D. I. Skovorodin
    I. S. Chernoshtanov
    V. Kh. Amirov
    V. T. Astrelin
    P. A. Bagryanskii
    A. D. Beklemishev
    A. V. Burdakov
    A. I. Gorbovskii
    I. A. Kotel’nikov
    E. M. Magommedov
    S. V. Polosatkin
    V. V. Postupaev
    V. V. Prikhod’ko
    V. Ya. Savkin
    E. I. Soldatkina
    A. L. Solomakhin
    A. V. Sorokin
    A. V. Sudnikov
    M. S. Khristo
    S. V. Shiyankov
    D. V. Yakovlev
    V. I. Shcherbakov
    Plasma Physics Reports, 2023, 49 : 1039 - 1086