Backward error analysis of polynomial approximations for computing the action of the matrix exponential

被引:8
|
作者
Caliari, Marco [1 ]
Kandolf, Peter [2 ]
Zivcovich, Franco [3 ]
机构
[1] Univ Verona, Dept Comp Sci, Verona, Italy
[2] Univ Innsbruck, Dept Math, Innsbruck, Austria
[3] Univ Trento, Dept Math, Trento, Italy
关键词
Backward error analysis; Action of matrix exponential; Leja-Hermite interpolation; Taylor series; DIVIDED DIFFERENCES; INTERPOLATION; ALGORITHM; COMPUTATION;
D O I
10.1007/s10543-018-0718-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe how to perform the backward error analysis for the approximation of exp(A) v by p(s(-1) A)(s)v, for any given polynomial p(x). The result of this analysis is an optimal choice of the scaling parameter s which assures a bound on the backward error, i.e. the equivalence of the approximation with the exponential of a slightly perturbed matrix. Thanks to the SageMath package expbea we have developed, one can optimize the performance of the given polynomial approximation. On the other hand, we employ the package for the analysis of polynomials interpolating the exponential function at so called Leja-Hermite points. The resulting method for the action of the matrix exponential can be considered an extension of both Taylor series approximation and Leja point interpolation. We illustrate the behavior of the new approximation with several numerical examples.
引用
收藏
页码:907 / 935
页数:29
相关论文
共 50 条
  • [31] Preconditioning Lanczos approximations to the matrix exponential
    Van den Eshof, J
    Hochbruck, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04): : 1438 - 1457
  • [32] Backward error of polynomial eigenproblems solved by linearization
    Higham, Nicholas J.
    Li, Ren-Cang
    Tisseur, Francoise
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (04) : 1218 - 1241
  • [33] Backward error and condition of polynomial eigenvalue problems
    Tisseur, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 309 (1-3) : 339 - 361
  • [34] The Exponential and Polynomial Approximations of the Fermi-Dirac Integral
    Borulko, Valentyn F.
    2019 XXIVTH INTERNATIONAL SEMINAR/WORKSHOP ON DIRECT AND INVERSE PROBLEMS OF ELECTROMAGNETIC AND ACOUSTIC WAVE THEORY (DIPED), 2019, : 139 - 142
  • [35] Computing unstructured and structured polynomial pseudospectrum approximations
    Noschese, Silvia
    Reichel, Lothar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 57 - 68
  • [36] Computing machine-efficient polynomial approximations
    Brisebarre, Nicolas
    Mueller, Jean-Michel
    Tisserand, Arnaud
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (02): : 236 - 256
  • [37] ESTIMATE OF MAXIMUM ERROR IN BEST POLYNOMIAL APPROXIMATIONS
    PHILLIPS, GM
    COMPUTER JOURNAL, 1968, 11 (01): : 110 - &
  • [38] Computing the matrix exponential with the double exponential formula
    Tatsuoka, Fuminori
    Sogabe, Tomohiro
    Kemmochi, Tomoya
    Zhang, Shao-Liang
    SPECIAL MATRICES, 2024, 12 (01):
  • [39] Backward error analysis of specified eigenpairs for sparse matrix polynomials
    Ahmad, Sk Safique
    Kanhya, Prince
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (04)
  • [40] Computing humps of the matrix exponential
    Nechepurenko, Yu. M.
    Sadkane, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 87 - 96