Backward error analysis;
Action of matrix exponential;
Leja-Hermite interpolation;
Taylor series;
DIVIDED DIFFERENCES;
INTERPOLATION;
ALGORITHM;
COMPUTATION;
D O I:
10.1007/s10543-018-0718-9
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
We describe how to perform the backward error analysis for the approximation of exp(A) v by p(s(-1) A)(s)v, for any given polynomial p(x). The result of this analysis is an optimal choice of the scaling parameter s which assures a bound on the backward error, i.e. the equivalence of the approximation with the exponential of a slightly perturbed matrix. Thanks to the SageMath package expbea we have developed, one can optimize the performance of the given polynomial approximation. On the other hand, we employ the package for the analysis of polynomials interpolating the exponential function at so called Leja-Hermite points. The resulting method for the action of the matrix exponential can be considered an extension of both Taylor series approximation and Leja point interpolation. We illustrate the behavior of the new approximation with several numerical examples.