Analysis of Dirichlet and Generalized "Hamming" window functions in the fractional Fourier transform domains

被引:33
|
作者
Kumar, Sanjay [1 ]
Singh, Kulbir [1 ]
Saxena, Rajiv [2 ]
机构
[1] Thapar Univ, Dept ECE, Patiala, Punjab, India
[2] Jaypee Univ Engn & Technol, Dept ECE, Guna, Madhya Pradesh, India
关键词
Fractional Fourier transform; Dirichlet window; Hamming window; Hanning window;
D O I
10.1016/j.sigpro.2010.04.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new mathematical model for obtaining the fractional Fourier transforms of Dirichlet and Generalized "Hamming" window functions is presented. The different parameters for the window functions are also obtained with the help of simulations. The fractional Fourier transformation contains an adjustable parameter with which the main lobe width and correspondingly, the minimum stop band attenuation of the resulting window function can be controlled. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:600 / 606
页数:7
相关论文
共 50 条
  • [31] Adaptive Short Time Fourier Transform (STFT) Analysis of Seismic Electric Signal (SES): A Comparison of Hamming and Rectangular Window
    Astuti, W.
    Sediono, W.
    Aibinu, A. M.
    Akmeliawati, R.
    Salami, M. J. E.
    2012 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ISIEA 2012), 2012,
  • [32] Fourier analysis of generalized functions
    Bouzar, Chikh
    Saidi, Tayeb
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (4-5) : 337 - 344
  • [33] The Watson Fourier transform on a certain class of generalized functions
    Loualid, El Mehdi
    Berkak, Imane
    Daher, Radouan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1425 - 1440
  • [34] The Watson Fourier transform on a certain class of generalized functions
    El Mehdi Loualid
    Imane Berkak
    Radouan Daher
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1425 - 1440
  • [35] ON FOURIER-LAPLACE TRANSFORM OF A CLASS OF GENERALIZED FUNCTIONS
    Musin, I. Kh
    UFA MATHEMATICAL JOURNAL, 2020, 12 (04): : 78 - 89
  • [36] Shift-invariance of short-time Fourier transform in fractional Fourier domains
    Durak, Lutfiye
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (02): : 136 - 146
  • [37] Generalized GL Fractional Derivative and its Laplace and Fourier Transform
    Ortigueira, Manuel D.
    Trujillo, Juan J.
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1227 - 1231
  • [38] 2-D affine generalized fractional Fourier transform
    Ding, JJ
    Pei, SC
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3181 - 3184
  • [39] Two-dimensional affine generalized fractional Fourier transform
    Pei, SC
    Ding, JJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (04) : 878 - 897
  • [40] Generalized joint fractional Fourier transform correlators: a compact approach
    Kuo, CJ
    Luo, Y
    APPLIED OPTICS, 1998, 37 (35): : 8270 - 8276