Analysis of Dirichlet and Generalized "Hamming" window functions in the fractional Fourier transform domains

被引:33
|
作者
Kumar, Sanjay [1 ]
Singh, Kulbir [1 ]
Saxena, Rajiv [2 ]
机构
[1] Thapar Univ, Dept ECE, Patiala, Punjab, India
[2] Jaypee Univ Engn & Technol, Dept ECE, Guna, Madhya Pradesh, India
关键词
Fractional Fourier transform; Dirichlet window; Hamming window; Hanning window;
D O I
10.1016/j.sigpro.2010.04.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new mathematical model for obtaining the fractional Fourier transforms of Dirichlet and Generalized "Hamming" window functions is presented. The different parameters for the window functions are also obtained with the help of simulations. The fractional Fourier transformation contains an adjustable parameter with which the main lobe width and correspondingly, the minimum stop band attenuation of the resulting window function can be controlled. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:600 / 606
页数:7
相关论文
共 50 条
  • [21] Generalized entropic uncertainty principle on fractional Fourier transform
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    SIGNAL PROCESSING, 2009, 89 (12) : 2692 - 2697
  • [22] Generalized Random Demodulator Associated with Fractional Fourier Transform
    Zhao, Haoran
    Qiao, Liyan
    Zhang, Jingchao
    Fu, Ning
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 5161 - 5173
  • [23] Generalized convolution theorem associated with fractional Fourier transform
    Shi, Jun
    Sha, Xuejun
    Song, Xiaocheng
    Zhang, Naitong
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2014, 14 (13): : 1340 - 1351
  • [24] A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION
    Mohanapriya, Arusamy
    Sivakumar, Varudaraj
    Prakash, Periasamy
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 749 - 763
  • [25] Triple image encryption scheme in fractional Fourier transform domains
    Liu, Zhengjun
    Dai, Jingmin
    Sun, Xiaogang
    Liu, Shutian
    OPTICS COMMUNICATIONS, 2009, 282 (04) : 518 - 522
  • [26] Beam analysis by fractional Fourier transform
    Xue, X
    Wei, HQ
    Kirk, AG
    OPTICS LETTERS, 2001, 26 (22) : 1746 - 1748
  • [27] Spectrums of Functions Associated to the Fractional Clifford–Fourier Transform
    Shanshan Li
    Jinsong Leng
    Minggang Fei
    Advances in Applied Clifford Algebras, 2020, 30
  • [28] Uncertainty principles of hypercomplex functions for fractional Fourier transform
    Gao, Wen-Biao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2298 - 2317
  • [29] Uncertainty principles of hypercomplex functions for fractional Fourier transform
    Wen-Biao Gao
    Fractional Calculus and Applied Analysis, 2023, 26 : 2298 - 2317
  • [30] Generalized Hankel Transform and Fractional Integrals on the Spaces of Generalized Functions
    Gehlot, Kuldeep Singh
    Vyas, Dinesh N.
    NEW TRENDS IN NANOTECHNOLOGY AND FRACTIONAL CALCULUS APPLICATIONS, 2010, : 203 - +