Multi-objective optimization for the aerodynamic noise of the high-speed train in the near and far field based on the improved NSGA-II algorithm

被引:9
|
作者
Yuan, Chun Yan [1 ]
Li, Ming Qing [2 ]
机构
[1] Changan Univ, Dept Civil Engn, Xian 710064, Shaanxi, Peoples R China
[2] Changan Univ, Dept Mech Engn, Xian 710064, Shaanxi, Peoples R China
关键词
high-speed train; train head; aerodynamic noises; large eddy simulation; boundary element method; vortex shape; LARGE-EDDY SIMULATION; DIPOLE SOUND SOURCE; NUMERICAL-ANALYSIS; PREDICTION; DRAG;
D O I
10.21595/jve.2017.18526
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
With the increased running speed of trains, the aerodynamic noise of trains becomes increasingly obvious. Reducing aerodynamic noises has become one of keys to controlling the noise of high-speed trains. This paper conducted a numerical simulation on the aerodynamic noise of head of the high-speed train. Firstly, this paper established a mathematical-physical model for the three-dimensional turbulent flow field of a high-speed train, adopted standard k-epsilon equation turbulent model and broadband noise source model to compute the aerodynamic noise sources of the high-speed train and applied three-dimensional transient large eddy simulation (LES) to compute the external unsteady flow field of the high-speed train after obtaining noise sources. Based on the unsteady flow field, then this paper applied FW-H equations to compute the far-field aerodynamic noise of the high-speed train. After obtaining the unsteady fluctuation pressure on the surface of the train, this paper computed the radiation characteristics of aerodynamic noises around the high-speed train based on the boundary element method (BEM). Researched results showed: The main aerodynamic noise sources of the high-speed train were at the nose tip of head train; fluid separation and recombination were main reasons for the aerodynamic noise of the highspeed train; vortexes in the position of head train were striped and horseshoe-shaped or hairpin vortexes were mainly in the area of tail train; in addition, vortexes were symmetrically distributed along the longitudinal symmetry plane of train; dipole noises were mainly distributed in the area of head train, whose main energy was decreased with the increased frequency; the quadrupole noise of aerodynamic noises of the high-speed train was mainly distributed in the wake flow area of tail train; when the high-speed train ran at the speed of 300 km/ h, the maximum sound pressure level of far-field observation points was 76.8 dB; additionally, aerodynamic noises in the far field were mainly a broadband noise, whose main energy was within the frequency range of 1250 Hz to 3150 Hz. Finally, the improved NSGA-II algorithm was used to conduct a multi-objective optimization for the head shape. The aerodynamic drag of the high-speed train could be most reduced by 6.74 %, and the dipole aerodynamic noise source could be most reduced by 8.34 dB. The improved NSGA-II algorithm has an obvious effect on the multi-objective optimization of the head shape.
引用
收藏
页码:4759 / 4782
页数:24
相关论文
共 50 条
  • [1] An Efficient Multi-objective Aerodynamic Shape Optimization Based on Improved NSGA-II
    Shi, Xingyu
    Duan, Yanhui
    2023 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY, VOL II, APISAT 2023, 2024, 1051 : 1107 - 1116
  • [2] A improved NSGA-II algorithm for constrained multi-objective optimization problems
    Wang, Maocai
    Wu, Yun
    Dai, Guangming
    Hu, Hanping
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 117 - 119
  • [3] Multi-objective optimization of integrated energy system based on improved NSGA-II algorithm
    Mei, Rui
    Wu, Tao
    Geng, Deji
    Zhang, Minzi
    Liu, Yanan
    Qian, Xusheng
    Sun, Yonghui
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1721 - 1726
  • [4] Multi-objective Optimization Scheduling Model Based on NSGA-II Algorithm
    Bian, Ruifeng
    Tan, Wenyi
    Li, Yilun
    Hou, Yichen
    2020 IEEE THE 3RD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE), 2020, : 149 - 156
  • [5] Multi-Objective Network Coding Optimization Based On NSGA-II Algorithm
    Hao, Kun
    Wang, Beibei
    Luo, Yongmei
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 843 - 846
  • [6] Multi-objective optimisation of high-speed rail profile with small radius curve based on NSGA-II Algorithm
    Li, Guofang
    Li, Xing
    Li, Meng
    Na, Tong
    Wu, Shaopei
    Ding, Wangcai
    VEHICLE SYSTEM DYNAMICS, 2023, 61 (12) : 3111 - 3135
  • [7] An Improved NSGA-II to Solve Multi-Objective Optimization Problem
    Fu, Yaping
    Huang, Min
    Wang, Hongfeng
    Jiang, Guanjie
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1037 - 1040
  • [8] Multi-objective optimization for materials design with improved NSGA-II
    Zhang, Peng
    Qian, Yiyu
    Qian, Quan
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [9] Research on multi-objective optimization of switched flux motor based on improved NSGA-II algorithm
    Jin, Liying
    Zhao, Shengdun
    Du, Wei
    Yang, Xuesong
    Wang, Wensheng
    Yang, Yuhang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2019, 233 (06) : 1268 - 1279
  • [10] Multi-Objective Image Optimization of Product Appearance Based on Improved NSGA-II
    Ao, Yinxue
    Lv, Jian
    Xie, Qingsheng
    Zhang, Zhengming
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (03): : 3049 - 3074