Scalable Transformation of Big Geospatial Data into Linked Data

被引:1
|
作者
Mandilaras, George [1 ]
Koubarakis, Manolis [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens, Greece
来源
SEMANTIC WEB - ISWC 2021 | 2021年 / 12922卷
基金
欧盟地平线“2020”;
关键词
D O I
10.1007/978-3-030-88361-4_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the era of big data, a vast amount of geospatial data has become available originating from a large diversity of sources. In most cases, this data does not follow the linked data paradigm and the existing transformation tools have been proved ineffective due to the large volume and velocity of geospatial data. This is because none of the existing tools can utilize effectively the processing power of clusters of computers. We present the system GeoTriples-Spark which is able to massively transform big geospatial data into RDF graphs using Apache Spark. We evaluate GeoTriple-Spark's performance and scalability in standalone and distributed environments and show that it exhibits superior performance and scalability when compared to all of its competitors.
引用
收藏
页码:480 / 495
页数:16
相关论文
共 50 条
  • [41] Introduction to Big Data: Scalable Representation and Analytics for Data Science
    Kaisler, Steve
    Armour, Frank
    Espinosa, Albert
    PROCEEDINGS OF THE 46TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2013, : 984 - 984
  • [42] A NoSQL Data Model For Scalable Big Data Workflow Execution
    Mohan, Aravind
    Ebrahimi, Mahdi
    Lu, Shiyong
    Kotov, Alexander
    2016 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2016, 2016, : 52 - 59
  • [43] Linked Open Data Mining for Democratization of Big Data
    Espinosa, Roberto
    Garriga, Larisa
    Jacobo Zubcoff, Jose
    Mazon, Jose-Norberto
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [44] Linked 'Big' Data: Towards a Manifold Increase in Big Data Value and Veracity
    Debattista, Jeremy
    Scerri, Simon
    Lange, Christoph
    Auer, Soeren
    2015 IEEE/ACM 2ND INTERNATIONAL SYMPOSIUM ON BIG DATA COMPUTING (BDC), 2015, : 92 - 98
  • [45] Investigation into the efficacy of geospatial big data visualization tools
    Barik, Rabindra K.
    Lenka, Rakesh K.
    Ali, Syed Mohd
    Gupta, Noopur
    Satpathy, Ananya
    Raj, Ankit
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 88 - 92
  • [46] Geospatial big data for urban planning and urban management
    Wu, Huayi
    Gui, Zhipeng
    Yang, Zelong
    GEO-SPATIAL INFORMATION SCIENCE, 2020, 23 (04) : 273 - 274
  • [47] GEOSPATIAL BIG DATA PROCESSING IN HYBRID CLOUD ENVIRONMENTS
    Simonis, Ingo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 419 - 421
  • [48] FogGIS: Fog Computing for Geospatial Big Data Analytics
    Barik, Rabindra K.
    Dubey, Harishchandra
    Samaddar, Arun B.
    Gupta, Rajan D.
    Ray, Prakash K.
    2016 IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ELECTRONICS ENGINEERING (UPCON), 2016, : 613 - 618
  • [49] Analysis and exploitation of Geospatial Big Data: State of art
    Loukili, Yassine
    El Aissi, Mohamed El Mehdi
    Benjelloun, Sarah
    Lakhrissi, Younes
    Chougrad, Hiba
    Ben Ali, Safae Elhaj
    El Boushaki, Abdessamad
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT2020), 2020,
  • [50] Production Machine Learning Frameworks for Geospatial Big Data
    Ntouskos, Valsamis
    Iliopoulou, Chrysa
    Karantzalos, Konstantinos
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5972 - 5974