Scalable Transformation of Big Geospatial Data into Linked Data

被引:1
|
作者
Mandilaras, George [1 ]
Koubarakis, Manolis [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens, Greece
来源
SEMANTIC WEB - ISWC 2021 | 2021年 / 12922卷
基金
欧盟地平线“2020”;
关键词
D O I
10.1007/978-3-030-88361-4_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the era of big data, a vast amount of geospatial data has become available originating from a large diversity of sources. In most cases, this data does not follow the linked data paradigm and the existing transformation tools have been proved ineffective due to the large volume and velocity of geospatial data. This is because none of the existing tools can utilize effectively the processing power of clusters of computers. We present the system GeoTriples-Spark which is able to massively transform big geospatial data into RDF graphs using Apache Spark. We evaluate GeoTriple-Spark's performance and scalability in standalone and distributed environments and show that it exhibits superior performance and scalability when compared to all of its competitors.
引用
收藏
页码:480 / 495
页数:16
相关论文
共 50 条
  • [31] Scalable Euclidean Embedding for Big Data
    Alavi, Zohreh
    Sharma, Sagar
    Zhou, Lu
    Chen, Keke
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, 2015, : 773 - 780
  • [32] A Scalable Big Data Test Framework
    Li, Nan
    Escalona, Anthony
    Guo, Yun
    Offutt, Jeff
    2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), 2015,
  • [33] Clouds for scalable Big Data processing
    Trunfio, Paolo
    Vlassov, Vladimir
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2019, 34 (06) : 629 - 631
  • [34] Clouds for Scalable Big Data Analytics
    Talia, Domenico
    COMPUTER, 2013, 46 (05) : 98 - 101
  • [35] Standards Conformance Metrics for Geospatial Linked Data
    Yaman, Beyza
    Thompson, Kevin
    Brennan, Rob
    KNOWLEDGE GRAPHS AND SEMANTIC WEB, KGSWC 2020, 2020, 1232 : 113 - 129
  • [36] Exposing Points of Interest as Linked Geospatial Data
    Patroumpas, Kostas
    Skoutas, Dimitrios
    Mandilaras, Georgios
    Giannopoulos, Giorgos
    Athanasiou, Spiros
    SSTD '19 - PROCEEDINGS OF THE 16TH INTERNATIONAL SYMPOSIUM ON SPATIAL AND TEMPORAL DATABASES, 2019, : 21 - 30
  • [37] Ireland's Authoritative Geospatial Linked Data
    Debruyne, Christophe
    Meehan, Alan
    Clinton, Eamonn
    McNerney, Lorraine
    Nautiyal, Atul
    Lavin, Peter
    O'Sullivan, Declan
    SEMANTIC WEB - ISWC 2017, PT II, 2017, 10588 : 66 - 74
  • [38] Using Maps for Interlinking Geospatial Linked Data
    Roosens, Dieter
    McGlinn, Kris
    Debruyne, Christophe
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2019 CONFERENCES, 2019, 11877 : 209 - 226
  • [39] Design of a Scalable Data Stream Channel for Big Data Processing
    Lee, Yong-Ju
    Lee, Myungcheol
    Lee, Mi-Young
    Hur, Sung Jin
    Min, Okgee
    2015 17TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2015, : 556 - 559
  • [40] AN EFFECTIVE AND SCALABLE DATA MODELING FOR ENTERPRISE BIG DATA PLATFORM
    Patel, Jayesh
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2691 - 2697