The particle swarm: Parameter selection and convergence

被引:0
|
作者
Xiao, RenYue [1 ]
Li, Bo [1 ]
He, XuPeng [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES | 2007年 / 2卷
关键词
particle swarm optimization; convergence;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The particle swarm optimization algorithm is an algorithm to find optimal regions of complex spaces through the interaction of individuals. Convergence analysis and parameter selection in the particle swarm optimization algorithm have been discussed in [2] and [7]. In this paper, the particle swarm optimization algorithm is analyzed further by using standard results from the dynamic system theory. Thus, we derived graphical parameter guidelines from it. Finally, we analyze the convergence of the algorithm by some examples.
引用
收藏
页码:396 / 402
页数:7
相关论文
共 50 条
  • [1] On convergence and parameter selection of an improved particle swarm optimization
    Chen, Xin
    Li, Yangmin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2008, 6 (04) : 559 - 570
  • [2] On the convergence analysis and parameter selection in particle swarm optimization
    Zheng, YL
    Ma, LH
    Zhang, LY
    Qian, JX
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1802 - 1807
  • [3] The particle swarm optimization algorithm: convergence analysis and parameter selection
    Trelea, IC
    INFORMATION PROCESSING LETTERS, 2003, 85 (06) : 317 - 325
  • [4] The standard particle swarm optimization algorithm convergence analysis and parameter selection
    Chuan, Lin
    Quanyuan, Feng
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2007, : 823 - +
  • [5] Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
    Jun Sun
    Xiaojun Wu
    Vasile Palade
    Wei Fang
    Yuhui Shi
    Machine Learning, 2015, 101 : 345 - 376
  • [6] Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
    Jiang, M.
    Luo, Y. P.
    Yang, S. Y.
    INFORMATION PROCESSING LETTERS, 2007, 102 (01) : 8 - 16
  • [7] Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
    Sun, Jun
    Wu, Xiaojun
    Palade, Vasile
    Fang, Wei
    Shi, Yuhui
    MACHINE LEARNING, 2015, 101 (1-3) : 345 - 376
  • [8] The novel parameter selection of Particle swarm optimization
    Li, Zhuo
    Qu, Xueluo
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 344 - +
  • [9] Parameter selection in particle swarm optimisation: a survey
    Jordehi, A. Rezaee
    Jasni, J.
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2013, 25 (04) : 527 - 542
  • [10] A closed loop stability analysis and parameter selection of the particle swarm optimization dynamics for faster convergence
    Samal, Nayan R.
    Konar, Amit
    Das, Swagatam
    Abraham, Ajith
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1769 - +