A closed loop stability analysis and parameter selection of the particle swarm optimization dynamics for faster convergence

被引:51
|
作者
Samal, Nayan R. [1 ]
Konar, Amit [1 ]
Das, Swagatam [1 ]
Abraham, Ajith [2 ]
机构
[1] Jadavpur Univ, ETCE Dept, Kolkata 700032, India
[2] Norwegian Univ Sci & Technol, Ctr Excellence Quantifiable Qual Serv Q2S, Trondheim, Norway
来源
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS | 2007年
关键词
D O I
10.1109/CEC.2007.4424687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an alternative formulation of the PSO dynamics by a closed loop control system, and analyzes the stability behavior of the system by using Jury's test and root locus technique. Previous stability analysis of the PSO dynamics was restricted because of no explicit modeling of the non-linear element in the feedback path. In the present analysis, the nonlinear element model of the non-linear element is considered for closed loop stability analysis. Unlike the previous works on stability analysis, where the acceleration coefficients have been combined into a single term, this paper considered their separate existence for determining their suitable range to ensure stability of the dynamics. The range of parameters of the PSO dynamics, obtained by Jury's test and root locus technique were also confirmed by computer simulation of the PSO algorithm.
引用
收藏
页码:1769 / +
页数:2
相关论文
共 50 条
  • [1] Parameter selection of a Particle Swarm Optimisation dynamics by closed loop stability analysis
    Samal, Nayan R.
    Konar, Amit
    Das, Swagatam
    Nagar, Atulya K.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2010, 3 (03) : 245 - 274
  • [2] On the convergence analysis and parameter selection in particle swarm optimization
    Zheng, YL
    Ma, LH
    Zhang, LY
    Qian, JX
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1802 - 1807
  • [3] The particle swarm optimization algorithm: convergence analysis and parameter selection
    Trelea, IC
    INFORMATION PROCESSING LETTERS, 2003, 85 (06) : 317 - 325
  • [4] The standard particle swarm optimization algorithm convergence analysis and parameter selection
    Chuan, Lin
    Quanyuan, Feng
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2007, : 823 - +
  • [5] On convergence and parameter selection of an improved particle swarm optimization
    Chen, Xin
    Li, Yangmin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2008, 6 (04) : 559 - 570
  • [6] Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
    Jun Sun
    Xiaojun Wu
    Vasile Palade
    Wei Fang
    Yuhui Shi
    Machine Learning, 2015, 101 : 345 - 376
  • [7] Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
    Jiang, M.
    Luo, Y. P.
    Yang, S. Y.
    INFORMATION PROCESSING LETTERS, 2007, 102 (01) : 8 - 16
  • [8] Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
    Sun, Jun
    Wu, Xiaojun
    Palade, Vasile
    Fang, Wei
    Shi, Yuhui
    MACHINE LEARNING, 2015, 101 (1-3) : 345 - 376
  • [9] The particle swarm: Parameter selection and convergence
    Xiao, RenYue
    Li, Bo
    He, XuPeng
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2007, 2 : 396 - 402
  • [10] Convergence and stochastic stability analysis of particle swarm optimization variants with generic parameter distributions
    Garcia-Gonzalo, Esperanza
    Luis Fernandez-Martinez, Juan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 286 - 302