The particle swarm: Parameter selection and convergence

被引:0
|
作者
Xiao, RenYue [1 ]
Li, Bo [1 ]
He, XuPeng [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES | 2007年 / 2卷
关键词
particle swarm optimization; convergence;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The particle swarm optimization algorithm is an algorithm to find optimal regions of complex spaces through the interaction of individuals. Convergence analysis and parameter selection in the particle swarm optimization algorithm have been discussed in [2] and [7]. In this paper, the particle swarm optimization algorithm is analyzed further by using standard results from the dynamic system theory. Thus, we derived graphical parameter guidelines from it. Finally, we analyze the convergence of the algorithm by some examples.
引用
收藏
页码:396 / 402
页数:7
相关论文
共 50 条
  • [41] Parameter Selection of a Support Vector Machine, Based on a Chaotic Particle Swarm Optimization Algorithm
    Dong, Huang
    Jian, Gao
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2015, 15 (03) : 140 - 149
  • [42] Adaptive parameter selection of quantum-behaved particle swarm optimization on global level
    Xu, WB
    Sun, J
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 420 - 428
  • [43] Optimal parameter selection in image similarity evaluation algorithms using Particle Swarm Optimization
    Kameyama, Keisuke
    Oka, Nozomi
    Toraichi, Kazuo
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1064 - +
  • [44] Parameter determination and feature selection for back-propagation network by particle swarm optimization
    Shih-Wei Lin
    Shih-Chieh Chen
    Wen-Jie Wu
    Chih-Hsien Chen
    Knowledge and Information Systems, 2009, 21 : 249 - 266
  • [45] Parameter determination and feature selection for back-propagation network by particle swarm optimization
    Lin, Shih-Wei
    Chen, Shih-Chieh
    Wu, Wen-Jie
    Chen, Chih-Hsien
    KNOWLEDGE AND INFORMATION SYSTEMS, 2009, 21 (02) : 249 - 266
  • [46] A Feature and Parameter Selection Approach for Visual Domain Adaptation using Particle Swarm Optimization
    Karn, Ravi Ranjan Prasad
    Sanodiya, Rakesh Kumar
    Sharma, Twinkle
    Sharan, Shreshtha
    Garg, Kritika
    Mathew, Jimson
    Yao, Leehter
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [47] Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems
    Serani, Andrea
    Leotardi, Cecilia
    Iemma, Umberto
    Campana, Emilio F.
    Fasano, Giovanni
    Diez, Matteo
    APPLIED SOFT COMPUTING, 2016, 49 : 313 - 334
  • [48] Parameter Selection of Support Vector Machine based on Chaotic Particle Swarm Optimization Algorithm
    Peng, Jingming
    Wang, Shuzhou
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3271 - 3274
  • [49] A convergence and diversity guided leader selection strategy for many-objective particle swarm optimization
    Li, Lingjie
    Li, Yongfeng
    Lin, Qiuzhen
    Ming, Zhong
    Coello, Carlos A. Coello
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [50] Particle swarm variants: standardized convergence analysis
    Cleghorn, Christopher W.
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE, 2015, 9 (2-3) : 177 - 203