TWIN MINUS TOTAL DOMINATION NUMBERS IN DIRECTED GRAPHS

被引:3
|
作者
Dehgardi, Nasrin [1 ]
Atapour, Maryam [2 ]
机构
[1] Sirjan Univ Technol, Dept Math & Comp Sci, Sirjan, Iran
[2] Univ Bonab, Dept Math, Fac Basic Sci, Bonab, Iran
关键词
twin minus total dominating function; twin minus total domination number; directed graph; SIGNED TOTAL DOMINATION;
D O I
10.7151/dmgt.1983
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D = (V, A) be a finite simple directed graph (shortly, digraph). A function f :V -> {-1, 0, 1} is called a twin minus total dominating function (TMTDF) if f (N- (v)) >= 1 and f (N+ (v)) >= 1 for each vertex v is an element of V. The twin minus total domination number of D is gamma*(mt) (D) = min{w(f) f is a TMTDF of D}. In this paper, we initiate the study of twin minus total domination numbers in digraphs and we present some lower bounds for gamma*(mt) (D) in terms of the order, size and maximum and minimum in-degrees and out-degrees. In addition, we determine the twin minus total domination numbers of some classes of digraphs.
引用
收藏
页码:989 / 1004
页数:16
相关论文
共 50 条
  • [21] On the total domination subdivision numbers in graphs
    Sheikholeslami, Seyed Mahmoud
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 468 - 473
  • [22] Upper Minus Total Domination Number of Regular Graphs
    Li, Zhen-lin
    Lu, Xin-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (01): : 69 - 74
  • [23] Signed and minus total domination on subclasses of bipartite graphs
    Lee, Chuan-Min
    ARS COMBINATORIA, 2011, 100 : 129 - 149
  • [24] Total minus domination in k-partite graphs
    Kang, Liying
    Shan, Erfang
    Caccetta, Louis
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1771 - 1775
  • [25] On graphs with equal total domination and connected domination numbers
    Chen, XG
    APPLIED MATHEMATICS LETTERS, 2006, 19 (05) : 472 - 477
  • [26] Upper Minus Total Domination Number of Regular Graphs
    Zhen-lin LI
    Xin-zhong Lü
    ActaMathematicaeApplicataeSinica, 2017, 33 (01) : 69 - 74
  • [27] Upper minus total domination number of regular graphs
    Zhen-lin Li
    Xin-zhong Lü
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 69 - 74
  • [28] Minus domination in graphs
    Dunbar, J
    Hedetniemi, S
    Henning, MA
    McRae, A
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 35 - 47
  • [29] On the p-domination, the total domination and the connected domination numbers of graphs
    Chellali, Mustapha
    Favaron, Odile
    Hansberg, Adriana
    Volkmann, Lutz
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 73 : 65 - 75
  • [30] Graphs and their complements with equal total domination numbers
    1600, Charles Babbage Research Centre (87):