Nordhaus-Gaddum-type theorems for decompositions into many parts

被引:15
|
作者
Füredi, Z
Kostochka, AV
Skrekovski, R
Stiebitz, M
West, DB
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Renyi Inst Math, H-1364 Budapest, Hungary
[3] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
[4] Charles Univ Prague, CR-18000 Prague, Czech Republic
[5] Univ Ljubljana, Ljubljana 1111, Slovenia
[6] Tech Univ Ilmenau, D-98693 Ilmenau, Germany
关键词
graph decomposition; Nordhaus-Gaddum Theorem; chromatic number; coloring number; list chromatic number; surface embedding;
D O I
10.1002/jgt.20113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-decomposition (G(1),...,G(k)) of a graph G is a partition of its edge set to form k spanning subgraphs G(1),...,G(k). The classical theorem of Nordhaus and Gaddum bounds chi(G(1)) + chi(G(2)) and chi(G(1))chi(G(2)) over all 2-decompositions of K, For a graph parameter p, let p(k;G) denote the maximum of Sigma(k)(i=1) p(G(i)) over all k-decompositions of the graph G. The clique number omega, chromatic number chi, list chromatic number chi(l), and Szekeres-Wilf number sigma satisfy omega(2;K-n) = chi(2;K-n) = X-l(2;K-n) = sigma(2;K-n) = n + 1. We obtain lower and upper bounds for omega(k;K-n), chi(k;K-n), chi(l)(k;K-n), and alpha(k;K-n). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of X(k; G) over all graphs embedded on a given surface. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 50 条
  • [1] NORDHAUS-GADDUM-TYPE THEOREM FOR DIAMETER OF GRAPHS WHEN DECOMPOSING INTO MANY PARTS
    An, Zhihua
    Wu, Baoyindureng
    Li, Daobin
    Wang, Yun
    Su, Guifu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (03) : 305 - 310
  • [2] SOME NORDHAUS-GADDUM-TYPE RESULTS
    GODDARD, W
    HENNING, MA
    SWART, HC
    JOURNAL OF GRAPH THEORY, 1992, 16 (03) : 221 - 231
  • [3] THE NORDHAUS-GADDUM-TYPE INEQUALITIES FOR THE NIRMALA INDICES
    Kumar, Virendra
    Das, Shibsankar
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (01): : 120 - 136
  • [4] Extremal decompositions for Nordhaus-Gaddum theorems
    Bickle, Allan
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [5] A Nordhaus-Gaddum-type result for the induced path number
    Hattingh, Johannes H.
    Saleh, Osama A.
    van der Merwe, Lucas C.
    Walters, Terry J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 329 - 338
  • [6] New Nordhaus-Gaddum-type results for the Kirchhoff index
    Yang, Yujun
    Zhang, Heping
    Klein, Douglas J.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (08) : 1587 - 1598
  • [7] Nordhaus-Gaddum-type theorem for Wiener index of graphs when decomposing into three parts
    Li, Daobin
    Wu, Baoyindureng
    Yang, Xunuan
    An, Xinhui
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1594 - 1600
  • [8] New Nordhaus-Gaddum-type results for the Kirchhoff index
    Yujun Yang
    Heping Zhang
    Douglas J. Klein
    Journal of Mathematical Chemistry, 2011, 49 : 1587 - 1598
  • [9] The Nordhaus-Gaddum-type inequality for the Wiener polarity index
    Zhang, Yanhong
    Hu, Yumei
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 880 - 884
  • [10] Nordhaus-Gaddum-Type Theorem for Rainbow Connection Number of Graphs
    Chen, Lily
    Li, Xueliang
    Lian, Huishu
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1235 - 1247