A design-based model of the aortic valve for fluid-structure interaction

被引:17
|
作者
Kaiser, Alexander D. [1 ,2 ,3 ]
Shad, Rohan [3 ,4 ]
Hiesinger, William [3 ,4 ]
Marsden, Alison L. [1 ,2 ,3 ,5 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
[3] Stanford Cardiovasc Inst, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Cardiothorac Surg, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Aortic valve; Aortic valve mechanics; Immersed boundary method; Aortic valve fluid-structure interaction; Aortic valve modeling; Heart valve modeling; BIAXIAL MECHANICAL-PROPERTIES; IMMERSED BOUNDARY MODEL; HEART-VALVE; PART I; DYNAMICS; CUSP; STRESS;
D O I
10.1007/s10237-021-01516-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a new method for modeling the mechanics of the aortic valve and simulates its interaction with blood. As much as possible, the model construction is based on first principles, but such that the model is consistent with experimental observations. We require that tension in the leaflets must support a pressure, then derive a system of partial differential equations governing its mechanical equilibrium. The solution to these differential equations is referred to as the predicted loaded configuration; it includes the loaded leaflet geometry, fiber orientations and tensions needed to support the prescribed load. From this configuration, we derive a reference configuration and constitutive law. In fluid-structure interaction simulations with the immersed boundary method, the model seals reliably under physiological pressures and opens freely over multiple cardiac cycles. Further, model closure is robust to extreme hypo- and hypertensive pressures. Then, exploiting the unique features of this model construction, we conduct experiments on reference configurations, constitutive laws and gross morphology. These experiments suggest the following conclusions: (1) The loaded geometry, tensions and tangent moduli primarily determine model function. (2) Alterations to the reference configuration have little effect if the predicted loaded configuration is identical. (3) The leaflets must have sufficiently nonlinear material response to function over a variety of pressures. (4) Valve performance is highly sensitive to free edge length and leaflet height. These conclusions suggest appropriate gross morphology and material properties for the design of prosthetic aortic valves. In future studies, our aortic valve modeling framework can be used with patient-specific models of vascular or cardiac flow.
引用
收藏
页码:2413 / 2435
页数:23
相关论文
共 50 条
  • [31] Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve
    Kemp, I.
    Dellimore, K.
    Rodriguez, R.
    Scheffer, C.
    Blaine, D.
    Weich, H.
    Doubell, A.
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2013, 36 (03) : 363 - 373
  • [32] Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics
    Yin, Zhongjie
    Armour, Chloee
    Kandail, Harkamaljot
    O'Regan, Declan P.
    Bahrami, Toufan
    Mirsadraee, Saeed
    Pirola, Selene
    Xu, Xiao Yun
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2024, 40 (11)
  • [33] Axial vibration in a poppet valve based on fluid-structure interaction
    Min, Wei
    Ji, Hong
    Yang, Linfeng
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2015, 229 (17) : 3266 - 3273
  • [34] Fluid-Structure Interaction Model of Aortic Valve With Porcine-Specific Collagen Fiber Alignment in the Cusps
    Marom, Gil
    Peleg, Mor
    Halevi, Rotem
    Rosenfeld, Moshe
    Raanani, Ehud
    Hamdan, Ashraf
    Haj-Ali, Rami
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (10):
  • [35] Computational Modeling of Aortic Stenosis With a Reduced Degree-of-Freedom Fluid-Structure Interaction Valve Model
    Zhu, Chi
    Seo, Jung-Hee
    Mittal, Rajat
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (03):
  • [36] Transient fluid-structure interaction in a central valve
    Kerh, T
    Lee, JJ
    Wellford, LC
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1997, 119 (02): : 354 - 359
  • [37] Fluid-structure interaction analysis of valve in pipes
    Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
    Zhejiang Daxue Xuebao (Gongxue Ban), 2006, 6 (971-976):
  • [38] A fully coupled fluid-structure interaction model of the secondary lymphatic valve
    Wilson, John T.
    Edgar, Lowell T.
    Prabhakar, Saurabh
    Horner, Marc
    van Loon, Raoul
    Moore, James E.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2018, 21 (16) : 813 - 823
  • [39] Validation of a fluid-structure interaction model for a bileaflet mechanical heart valve
    Forsythe, Neil
    Mueller, Jens-Dominik
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2008, 22 (08) : 541 - 553
  • [40] Development of a fluid-structure interaction model to simulate mitral valve malcoaptation
    Hassani, Kamran
    Karimi, Alireza
    Dehghani, Ali
    Golpaygani, Ali Tavakoli
    Abdi, Hamed
    Espino, Daniel M.
    PERFUSION-UK, 2019, 34 (03): : 225 - 230