A design-based model of the aortic valve for fluid-structure interaction

被引:17
|
作者
Kaiser, Alexander D. [1 ,2 ,3 ]
Shad, Rohan [3 ,4 ]
Hiesinger, William [3 ,4 ]
Marsden, Alison L. [1 ,2 ,3 ,5 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
[3] Stanford Cardiovasc Inst, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Cardiothorac Surg, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Aortic valve; Aortic valve mechanics; Immersed boundary method; Aortic valve fluid-structure interaction; Aortic valve modeling; Heart valve modeling; BIAXIAL MECHANICAL-PROPERTIES; IMMERSED BOUNDARY MODEL; HEART-VALVE; PART I; DYNAMICS; CUSP; STRESS;
D O I
10.1007/s10237-021-01516-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a new method for modeling the mechanics of the aortic valve and simulates its interaction with blood. As much as possible, the model construction is based on first principles, but such that the model is consistent with experimental observations. We require that tension in the leaflets must support a pressure, then derive a system of partial differential equations governing its mechanical equilibrium. The solution to these differential equations is referred to as the predicted loaded configuration; it includes the loaded leaflet geometry, fiber orientations and tensions needed to support the prescribed load. From this configuration, we derive a reference configuration and constitutive law. In fluid-structure interaction simulations with the immersed boundary method, the model seals reliably under physiological pressures and opens freely over multiple cardiac cycles. Further, model closure is robust to extreme hypo- and hypertensive pressures. Then, exploiting the unique features of this model construction, we conduct experiments on reference configurations, constitutive laws and gross morphology. These experiments suggest the following conclusions: (1) The loaded geometry, tensions and tangent moduli primarily determine model function. (2) Alterations to the reference configuration have little effect if the predicted loaded configuration is identical. (3) The leaflets must have sufficiently nonlinear material response to function over a variety of pressures. (4) Valve performance is highly sensitive to free edge length and leaflet height. These conclusions suggest appropriate gross morphology and material properties for the design of prosthetic aortic valves. In future studies, our aortic valve modeling framework can be used with patient-specific models of vascular or cardiac flow.
引用
收藏
页码:2413 / 2435
页数:23
相关论文
共 50 条
  • [1] A design-based model of the aortic valve for fluid-structure interaction
    Alexander D. Kaiser
    Rohan Shad
    William Hiesinger
    Alison L. Marsden
    Biomechanics and Modeling in Mechanobiology, 2021, 20 : 2413 - 2435
  • [2] A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root
    Marom, Gil
    Haj-Ali, Rami
    Raanani, Ehud
    Schaefers, Hans-Joachim
    Rosenfeld, Moshe
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2012, 50 (02) : 173 - 182
  • [3] Validation and Extension of a Fluid-Structure Interaction Model of the Healthy Aortic Valve
    Tango, Anna Maria
    Salmonsmith, Jacob
    Ducci, Andrea
    Burriesci, Gaetano
    CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2018, 9 (04) : 739 - 751
  • [4] An approach to the simulation of fluid-structure interaction in the aortic valve
    Carmody, CJ
    Burriesci, G
    Howard, IC
    Patterson, EA
    JOURNAL OF BIOMECHANICS, 2006, 39 (01) : 158 - 169
  • [5] Fluid-structure interaction analysis of transcatheter aortic valve implantation
    Fumagalli, Ivan
    Polidori, Rebecca
    Renzi, Francesca
    Fusini, Laura
    Quarteroni, Alfio
    Pontone, Gianluca
    Vergara, Christian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (06)
  • [6] Fluid-Structure Interaction Aortic Valve Surgery Simulation: A Review
    Kuchumov, Alex G.
    Makashova, Anastasiya
    Vladimirov, Sergey
    Borodin, Vsevolod
    Dokuchaeva, Anna
    FLUIDS, 2023, 8 (11)
  • [7] Fluid-structure interaction simulation of calcified aortic valve stenosis
    Cai, Li
    Hao, Yu
    Ma, Pengfei
    Zhu, Guangyu
    Luo, Xiaoyu
    Gao, Hao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 13172 - 13192
  • [8] Fluid-Structure Interaction Simulations of Bicuspid Aortic Valve Disease
    Kaiser, Alexander D.
    Shad, Rohan
    Schiavone, Nicole
    Hiesinger, William
    Marsden, Alison L.
    CIRCULATION, 2021, 144
  • [9] Modeling of aortic valve stenosis using fluid-structure interaction method
    Ghasemi Pour, Mohammad Javad
    Hassani, Kamran
    Khayat, Morteza
    Etemadi Haghighi, Shahram
    PERFUSION-UK, 2022, 37 (04): : 367 - 376
  • [10] Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation?
    Luraghi, Giulia
    Wu, Wei
    De Gaetano, Francesco
    Matas, Jose Felix Rodriguez
    Moggridge, Geoff D.
    Serrani, Marta
    Stasiak, Joanna
    Costantino, Maria Laura
    Migliavacca, Francesco
    JOURNAL OF BIOMECHANICS, 2017, 58 : 45 - 51