Inference of causal structure using the unobservable

被引:0
|
作者
Desjardins, B [1 ]
机构
[1] Univ Pittsburgh, Dept HPS, Pittsburgh, PA 15260 USA
关键词
causal models; latent variables;
D O I
10.1080/09528130110063128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current constraint-based approaches to the discovery of causal structure in statistical data are unable to discriminate between causal models which entail identical sets of marginal dependencies. Often, marginal dependencies between observed variables are the result of complex causal connections involving observed and latent variables. This paper shows that, in such cases, the latent causal structure in a model often entails properties which can be tested against empirical evidence, and thus used to discriminate between equivalent alternative models of an empirical phenomenon under study.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 50 条
  • [41] Using Propensity Scores for Causal Inference: Pitfalls and Tips
    Shiba, Koichiro
    Kawahara, Takuya
    JOURNAL OF EPIDEMIOLOGY, 2021, 31 (08) : 457 - 463
  • [42] Causal inference in melanoma epidemiology using Mendelian randomization
    Bell, K. J. L.
    BRITISH JOURNAL OF DERMATOLOGY, 2020, 182 (01) : 13 - 14
  • [43] Using Split Samples to Improve Inference on Causal Effects
    Fafchamps, Marcel
    Labonne, Julien
    POLITICAL ANALYSIS, 2017, 25 (04) : 465 - 482
  • [44] Using latent outcome trajectory classes in causal inference
    Jo, Booil
    Wang, Chen-Pin
    Ialongo, Nicholas S.
    STATISTICS AND ITS INTERFACE, 2009, 2 (04) : 403 - 412
  • [45] A distributional approach for causal inference using propensity scores
    Tan, Zhiqiang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1619 - 1637
  • [46] Causal Inference Using Mixture Models: A Word of Caution
    Robbins, Michael W.
    Setodji, Claude M.
    MEDICAL CARE, 2014, 52 (09) : 770 - 772
  • [47] Private Causal Inference
    Kusner, Matt J.
    Sun, Yu
    Sridharan, Karthik
    Weinberger, Kilian Q.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1308 - 1317
  • [48] The Challenge of Causal Inference
    Dammann, Olaf
    Leviton, Alan
    ANNALS OF NEUROLOGY, 2010, 68 (05) : 770 - 770
  • [49] THE RATIONALITY OF CAUSAL INFERENCE
    SHULTZ, TR
    BEHAVIORAL AND BRAIN SCIENCES, 1991, 14 (03) : 503 - 503
  • [50] Causal Graph Inference
    Poilinca, Simona
    Parajuli, Jhanak
    Abreu, Giuseppe
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1209 - 1213