Inference of causal structure using the unobservable

被引:0
|
作者
Desjardins, B [1 ]
机构
[1] Univ Pittsburgh, Dept HPS, Pittsburgh, PA 15260 USA
关键词
causal models; latent variables;
D O I
10.1080/09528130110063128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current constraint-based approaches to the discovery of causal structure in statistical data are unable to discriminate between causal models which entail identical sets of marginal dependencies. Often, marginal dependencies between observed variables are the result of complex causal connections involving observed and latent variables. This paper shows that, in such cases, the latent causal structure in a model often entails properties which can be tested against empirical evidence, and thus used to discriminate between equivalent alternative models of an empirical phenomenon under study.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 50 条
  • [31] Observational process data analytics using causal inference
    Yang, Shu
    Bequette, B. Wayne
    AICHE JOURNAL, 2023, 69 (04)
  • [32] Causal inference and effect estimation using observational data
    Igelstrom, Erik
    Craig, Peter
    Lewsey, Jim
    Lynch, John
    Pearce, Anna
    Katikireddi, Srinivasa Vittal
    JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2022, 76 (11) : 960 - 966
  • [33] Matching Using Sufficient Dimension Reduction for Causal Inference
    Luo, Wei
    Zhu, Yeying
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (04) : 888 - 900
  • [35] Causal Genetic Inference Using Haplotypes as Instrumental Variables
    Wang, Fan
    Meyer, Nuala J.
    Walley, Keith R.
    Russell, James A.
    Feng, Rui
    GENETIC EPIDEMIOLOGY, 2016, 40 (01) : 35 - 44
  • [36] Causal Inference of Social Experiments Using Orthogonal Designs
    Heckman, James J.
    Pinto, Rodrigo
    JOURNAL OF QUANTITATIVE ECONOMICS, 2022, 20 (SUPPL 1) : 7 - 30
  • [37] Using Mendelian randomization as the cornerstone for causal inference in epidemiology
    Jianguo Xu
    Muyang Li
    Ya Gao
    Ming Liu
    Shuzhen Shi
    Jiyuan Shi
    Kelu Yang
    Zheng Zhou
    Jinhui Tian
    Environmental Science and Pollution Research, 2022, 29 : 5827 - 5839
  • [38] Causal Inference of Social Experiments Using Orthogonal Designs
    James J. Heckman
    Rodrigo Pinto
    Journal of Quantitative Economics, 2022, 20 : 7 - 30
  • [39] Prediction and causal inference of hyperuricemia using gut microbiota
    Miyajima, Yuna
    Karashima, Shigehiro
    Mizoguchi, Ren
    Kawakami, Masaki
    Ogura, Kohei
    Ogai, Kazuhiro
    Koshida, Aoi
    Ikagawa, Yasuo
    Ami, Yuta
    Zhu, Qiunan
    Tsujiguchi, Hiromasa
    Hara, Akinori
    Kurihara, Shin
    Arakawa, Hiroshi
    Nakamura, Hiroyuki
    Tamai, Ikumi
    Nambo, Hidetaka
    Okamoto, Shigefumi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Using Mendelian randomization as the cornerstone for causal inference in epidemiology
    Xu, Jianguo
    Li, Muyang
    Gao, Ya
    Liu, Ming
    Shi, Shuzhen
    Shi, Jiyuan
    Yang, Kelu
    Zhou, Zheng
    Tian, Jinhui
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (04) : 5827 - 5839