Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs

被引:69
|
作者
Fang, Weijun [1 ,2 ,3 ,4 ]
Fu, Fang-Wei [3 ,4 ,5 ]
Li, Lanqiang [6 ]
Zhu, Shixin [6 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Peng Cheng Lab, PCL Res Ctr Networks & Commun, Shenzhen 518055, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Nankai Univ, Tianjin Key Lab Network & Data Secur Technol, Tianjin 300071, Peoples R China
[6] Hefei Univ Technol, Sch Math, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear codes; hulls; Hermitian hulls; MDS codes; generalized Reed-Solomon codes; entanglement-assisted quantum error-correcting codes (EAQECCs); ERROR-CORRECTING CODES; LINEAR CODES; QUANTUM; PERMUTATION; EQUIVALENT;
D O I
10.1109/TIT.2019.2950245
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we construct several classes of maximum distance separable (MDS) codes via generalized Reed-Solomon (GRS) codes and extended GRS codes, where we can determine the dimensions of their Euclidean hulls or Hermitian hulls. It turns out that the dimensions of Euclidean hulls or Hermitian hulls of the codes in our constructions can take all or almost all possible values. As a consequence, we can apply our results to entanglement-assisted quantum error-correcting codes (EAQECCs) and obtain several new families of MDS EAQECCs with flexible parameters. The required number of maximally entangled states of these MDS EAQECCs can take all or almost all possible values. Moreover, several new classes of q-ary MDS EAQECCs of length n > q + 1 are also obtained.
引用
收藏
页码:3527 / 3537
页数:11
相关论文
共 50 条
  • [31] On the Hermitian Hulls of Two-Point Algebraic Geometry Codes
    Sok, Lin
    Ezerman, Martianus Frederic
    Ling, San
    2024 IEEE INFORMATION THEORY WORKSHOP, ITW 2024, 2024, : 13 - 18
  • [32] MDS Codes With Hulls of Arbitrary Dimensions and Their Quantum Error Correction
    Luo, Gaojun
    Cao, Xiwang
    Chen, Xiaojing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 2944 - 2952
  • [33] New MDS Euclidean Self-Orthogonal Codes
    Fang, Xiaolei
    Liu, Meiqing
    Luo, Jinquan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) : 130 - 137
  • [34] New MDS EAQECCs from constacyclic codes over finite non-chain rings
    Li Lin
    Yaozong Zhang
    Xiaotong Hou
    Jian Gao
    Quantum Information Processing, 22
  • [35] New MDS EAQECCs from constacyclic codes over finite non-chain rings
    Lin, Li
    Zhang, Yaozong
    Hou, Xiaotong
    Gao, Jian
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [36] MDS codes with l-Galois hulls of arbitrary dimensions
    Qian, Liqin
    Cao, Xiwang
    Wu, Xia
    Lu, Wei
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (07) : 1879 - 1902
  • [37] Hulls of linear codes revisited with applications
    Satanan Thipworawimon
    Somphong Jitman
    Journal of Applied Mathematics and Computing, 2020, 62 : 325 - 340
  • [38] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Hao Chen
    Designs, Codes and Cryptography, 2023, 91 : 2665 - 2676
  • [39] MDS, Hermitian almost MDS, and Gilbert–Varshamov quantum codes from generalized monomial-Cartesian codes
    Beatriz Barbero-Lucas
    Fernando Hernando
    Helena Martín-Cruz
    Gary McGuire
    Quantum Information Processing, 23
  • [40] Hulls of linear codes revisited with applications
    Thipworawimon, Satanan
    Jitman, Somphong
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 325 - 340