共 50 条
Linkage of modules over Cohen-Macaulay rings
被引:8
|作者:
Dibaei, Mohammad T.
[1
,2
]
Gheibi, Mohsen
[1
,2
]
Hassanzadeh, S. H.
[1
,2
]
Sadeghi, Arash
[1
,2
]
机构:
[1] Tarbiat Moallem Univ, Fac Math Sci & Comp, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词:
Linkage of modules;
Sliding depth of extension modules;
Modules with Cohen-Macaulay extension;
Sequentially Cohen-Macaulay;
IDEALS;
D O I:
10.1016/j.jalgebra.2011.02.025
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Inspired by the theory of linkage for ideals, the concept of sliding depth of a finitely generated module over a Noetherian local ring is defined in terms of its Ext modules. As a result, in the module-theoretic linkage theory of Martsinkovsky and Strooker, one proves the Cohen-Macaulayness of a linked module if the base ring is Cohen-Macaulay (not necessarily Gorenstein). Some interplay is established between the sliding depth condition and other module-theoretic notions such as the G-dimension and the property of being sequentially Cohen-Macaulay. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 187
页数:11
相关论文