Linkage of modules over Cohen-Macaulay rings

被引:8
|
作者
Dibaei, Mohammad T. [1 ,2 ]
Gheibi, Mohsen [1 ,2 ]
Hassanzadeh, S. H. [1 ,2 ]
Sadeghi, Arash [1 ,2 ]
机构
[1] Tarbiat Moallem Univ, Fac Math Sci & Comp, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Linkage of modules; Sliding depth of extension modules; Modules with Cohen-Macaulay extension; Sequentially Cohen-Macaulay; IDEALS;
D O I
10.1016/j.jalgebra.2011.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by the theory of linkage for ideals, the concept of sliding depth of a finitely generated module over a Noetherian local ring is defined in terms of its Ext modules. As a result, in the module-theoretic linkage theory of Martsinkovsky and Strooker, one proves the Cohen-Macaulayness of a linked module if the base ring is Cohen-Macaulay (not necessarily Gorenstein). Some interplay is established between the sliding depth condition and other module-theoretic notions such as the G-dimension and the property of being sequentially Cohen-Macaulay. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条