Exploiting color name space for salient object detection

被引:8
|
作者
Lou, Jing [1 ]
Wang, Huan [2 ]
Chen, Longtao [2 ]
Xu, Fenglei [2 ]
Xia, Qingyuan [2 ]
Zhu, Wei [2 ]
Ren, Mingwu [2 ]
机构
[1] Changzhou Vocat Inst Mechatron Technol, Sch Informat Engn, Changzhou 213164, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Saliency; Salient object detection; Figure-ground segregation; Surroundedness; Color names; Color name space; REGION DETECTION; VISUAL-ATTENTION; IMAGE; INTEGRATION; MODEL;
D O I
10.1007/s11042-019-07970-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we will investigate the contribution of color names for the task of salient object detection. An input image is first converted to color name space, which is consisted of 11 probabilistic channels. By exploiting a surroundedness cue, we obtain a saliency map through a linear combination of a set of sequential attention maps. To overcome the limitation of only using the surroundedness cue, two global cues with respect to color names are invoked to guide the computation of a weighted saliency map. Finally, we integrate the above two saliency maps into a unified framework to generate the final result. In addition, an improved post-processing procedure is introduced to effectively suppress image backgrounds while uniformly highlight salient objects. Experimental results show that the proposed model produces more accurate saliency maps and performs well against twenty-one saliency models in terms of three evaluation metrics on three public data sets.
引用
收藏
页码:10873 / 10897
页数:25
相关论文
共 50 条
  • [41] Robust and Accelerated Frequency-Tuned Salient Object Detection via Color Quantization
    Huang, Zhe
    Guo, Baolong
    Wang, Geng
    Li, Cheng
    Wei, Zhifei
    5TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2020), 2020, 1575
  • [42] Salient object detection using color spatial distribution and minimum spanning tree weight
    Tang, Chang
    Hou, Chunping
    Wang, Pichao
    Song, Zhanjie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (12) : 6963 - 6978
  • [43] Salient object detection using color spatial distribution and minimum spanning tree weight
    Chang Tang
    Chunping Hou
    Pichao Wang
    Zhanjie Song
    Multimedia Tools and Applications, 2016, 75 : 6963 - 6978
  • [44] Exploiting contrast cues for salient region detection
    Niu, Jie
    Bu, Xiongzhu
    Qian, Kun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (08) : 10427 - 10441
  • [45] Exploiting contrast cues for salient region detection
    Jie Niu
    Xiongzhu Bu
    Kun Qian
    Multimedia Tools and Applications, 2017, 76 : 10427 - 10441
  • [46] Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Liu, Jiang-Jiang
    Gao, Shang-Hua
    Hou, Qibin
    Borji, Ali
    COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 196 - 212
  • [47] SALIENT OBJECT DETECTION IN HYPERSPECTRAL IMAGERY
    Liang, Jie
    Zhou, Jun
    Bai, Xiao
    Qian, Yuntao
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2393 - 2397
  • [48] Salient Region Detection for Object Tracking
    Chan, Fan
    Jiang, Min
    Tang, Jinshan
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2012, 2012, 8406
  • [49] Super Diffusion for Salient Object Detection
    Jiang, Peng
    Pan, Zhiyi
    Tu, Changhe
    Vasconcelos, Nuno
    Chen, Baoquan
    Peng, Jingliang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 2903 - 2917
  • [50] Salient object detection based on regions
    Zhuojia Liang
    Mingjia Wang
    Xiaocong Zhou
    Liang Lin
    Wenjun Li
    Multimedia Tools and Applications, 2014, 68 : 517 - 544