Exploiting color name space for salient object detection

被引:8
|
作者
Lou, Jing [1 ]
Wang, Huan [2 ]
Chen, Longtao [2 ]
Xu, Fenglei [2 ]
Xia, Qingyuan [2 ]
Zhu, Wei [2 ]
Ren, Mingwu [2 ]
机构
[1] Changzhou Vocat Inst Mechatron Technol, Sch Informat Engn, Changzhou 213164, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Saliency; Salient object detection; Figure-ground segregation; Surroundedness; Color names; Color name space; REGION DETECTION; VISUAL-ATTENTION; IMAGE; INTEGRATION; MODEL;
D O I
10.1007/s11042-019-07970-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we will investigate the contribution of color names for the task of salient object detection. An input image is first converted to color name space, which is consisted of 11 probabilistic channels. By exploiting a surroundedness cue, we obtain a saliency map through a linear combination of a set of sequential attention maps. To overcome the limitation of only using the surroundedness cue, two global cues with respect to color names are invoked to guide the computation of a weighted saliency map. Finally, we integrate the above two saliency maps into a unified framework to generate the final result. In addition, an improved post-processing procedure is introduced to effectively suppress image backgrounds while uniformly highlight salient objects. Experimental results show that the proposed model produces more accurate saliency maps and performs well against twenty-one saliency models in terms of three evaluation metrics on three public data sets.
引用
收藏
页码:10873 / 10897
页数:25
相关论文
共 50 条
  • [21] SALIENT FEATURES OF COLOR SPACE
    WHITFIELD, TWA
    PERCEPTION & PSYCHOPHYSICS, 1981, 29 (02): : 87 - 90
  • [22] Salient Object Detection in Images by Combining Objectness Clues in the RGBD Space
    Audet, Francois
    Allili, Mohand Said
    Cretu, Ana-Maria
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 247 - 255
  • [23] What is a Salient Object? A Dataset and a Baseline Model for Salient Object Detection
    Borji, Ali
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (02) : 742 - 756
  • [24] IVA FOR ABANDONED OBJECT DETECTION: EXPLOITING DEPENDENCE ACROSS COLOR CHANNELS
    Bhinge, Suchita
    Boukouvalas, Zois
    Levin-Schwartz, Yuri
    Adali, Tulay
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2494 - 2498
  • [25] Salient Object Detection by Composition
    Feng, Jie
    Wei, Yichen
    Tao, Litian
    Zhang, Chao
    Sun, Jian
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1028 - 1035
  • [26] Spectral salient object detection
    Fu, Keren
    Gu, Irene Yu-Hua
    Yang, Jie
    NEUROCOMPUTING, 2018, 275 : 788 - 803
  • [27] Salient object detection: A survey
    Borji, Ali
    Cheng, Ming-Ming
    Hou, Qibin
    Jiang, Huaizu
    Li, Jia
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) : 117 - 150
  • [28] Salient Object Detection: A Benchmark
    Borji, Ali
    Sihite, Dicky N.
    Itti, Laurent
    COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 414 - 429
  • [29] Salient object detection: A survey
    Ali Borji
    Ming-Ming Cheng
    Qibin Hou
    Huaizu Jiang
    Jia Li
    Computational Visual Media, 2019, 5 (02) : 117 - 150
  • [30] Salient Object Detection: A Benchmark
    Borji, Ali
    Cheng, Ming-Ming
    Jiang, Huaizu
    Li, Jia
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5706 - 5722