GPApriori: GPU-Accelerated Frequent Itemset Mining

被引:35
|
作者
Zhang, Fan [1 ]
Zhang, Yan [1 ]
Bakos, Jason [1 ]
机构
[1] Univ S Carolina, Dept Comp Sci, Columbia, SC 29208 USA
关键词
Association rule mining; Frequent itemset mining; CUDA GPU computing; Parallel Computing;
D O I
10.1109/CLUSTER.2011.61
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we describe GPApriori, a GPU-accelerated implementation of Frequent Itemset Mining (FIM). We tested our implementation with an Nvidia Tesla T10 graphic processor and demonstrate up to 100X speedup as compared with several state-of-the-art FIM algorithms on a CPU. In order to map the Apriori algorithm onto the SIMD execution model, we have designed a "static bitset" memory structure to represent the input database. This data structure improves upon the traditional approach of the vertical data layout in state-of-the art Apriori implementations. In our implementation, we perform a parallelized version of the support counting step on the GPU. Experimental results show that GPApriori consistently outperforms CPU-based Apriori implementations. Our results demonstrate the potential for GPGPUs in speeding up data mining algorithms.
引用
收藏
页码:590 / 594
页数:5
相关论文
共 50 条
  • [31] On Differentially Private Frequent Itemset Mining
    Zeng, Chen
    Naughton, Jeffrey F.
    Cai, Jin-Yi
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 6 (01): : 25 - 36
  • [32] An approximate approach to frequent itemset mining
    Zhang, Chunkai
    Zhang, Xudong
    Tian, Panbo
    2017 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC), 2017, : 68 - 73
  • [33] Frequent Itemset Mining for Big Data
    Moens, Sandy
    Aksehirli, Emin
    Goethals, Bart
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [34] Frequent Itemset Mining for Big Data
    Chavan, Kiran
    Kulkarni, Priyanka
    Ghodekar, Pooja
    Patil, S. N.
    2015 International Conference on Green Computing and Internet of Things (ICGCIoT), 2015, : 1365 - 1368
  • [35] GPU-Accelerated Dynamic Graph Coloring
    Yang, Ying
    Gu, Yu
    Li, Chuanwen
    Wan, Changyi
    Yu, Ge
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 296 - 299
  • [36] Toward GPU-accelerated Database Optimization
    Meister, Andreas
    Breß, Sebastian
    Saake, Gunter
    Datenbank-Spektrum, 2015, 15 (02) : 131 - 140
  • [37] GPU-accelerated eXtended Classifier System
    Abedini, Mani
    Kirley, Michael
    Chiong, Raymond
    Weise, Thomas
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2013, : 293 - 300
  • [38] GPU-Accelerated Static Timing Analysis
    Guo, Zizheng
    Huang, Tsung-Wei
    Lin, Yibo
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [39] GPU-Accelerated Flexible Molecular Docking
    Fan, Mengran
    Wang, Jian
    Jiang, Huaipan
    Feng, Yilin
    Mahdavi, Mehrdad
    Madduri, Kamesh
    Kandemir, Mahmut T.
    Dokholyan, Nikolay, V
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (04): : 1049 - 1060
  • [40] PacketShader: A GPU-Accelerated Software Router
    Han, Sangjin
    Jang, Keon
    Park, KyoungSoo
    Moon, Sue
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2010, 40 (04) : 195 - 206