GPApriori: GPU-Accelerated Frequent Itemset Mining

被引:35
|
作者
Zhang, Fan [1 ]
Zhang, Yan [1 ]
Bakos, Jason [1 ]
机构
[1] Univ S Carolina, Dept Comp Sci, Columbia, SC 29208 USA
关键词
Association rule mining; Frequent itemset mining; CUDA GPU computing; Parallel Computing;
D O I
10.1109/CLUSTER.2011.61
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we describe GPApriori, a GPU-accelerated implementation of Frequent Itemset Mining (FIM). We tested our implementation with an Nvidia Tesla T10 graphic processor and demonstrate up to 100X speedup as compared with several state-of-the-art FIM algorithms on a CPU. In order to map the Apriori algorithm onto the SIMD execution model, we have designed a "static bitset" memory structure to represent the input database. This data structure improves upon the traditional approach of the vertical data layout in state-of-the art Apriori implementations. In our implementation, we perform a parallelized version of the support counting step on the GPU. Experimental results show that GPApriori consistently outperforms CPU-based Apriori implementations. Our results demonstrate the potential for GPGPUs in speeding up data mining algorithms.
引用
收藏
页码:590 / 594
页数:5
相关论文
共 50 条
  • [21] Frequent Itemset Mining in Multirelational Databases
    Jimenez, Aida
    Berzal, Fernando
    Cubero, Juan-Carlos
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2009, 5722 : 15 - 24
  • [22] Verified Programs for Frequent Itemset Mining
    Loulergue, Frederic
    Whitney, Christopher D.
    2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2018, : 1516 - 1523
  • [23] A primer to frequent itemset mining for bioinformatics
    Naulaerts, Stefan
    Meysman, Pieter
    Bittremieux, Wout
    Trung Nghia Vu
    Vanden Berghe, Wim
    Goethals, Bart
    Laukens, Kris
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) : 216 - 231
  • [24] Oracle and Vertica for Frequent Itemset Mining
    Kyurkchiev, Hristo
    Kaloyanova, Kalinka
    DATA MINING AND BIG DATA, DMBD 2016, 2016, 9714 : 77 - 85
  • [25] An efficient frequent itemset mining algorithm
    Luo, Ke
    Zhang, Xue-Mao
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 756 - 761
  • [26] A parallel algorithm for frequent itemset mining
    Li, L
    Zhai, DH
    Fan, J
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, 2003, : 868 - 871
  • [27] Frequent itemset mining with parallel RDBMS
    Shang, XQ
    Sattler, KU
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2005, 3518 : 539 - 544
  • [28] Frequent closed informative itemset mining
    Fu, Huaiguo
    Foghlu, Micheal O.
    Donnelly, Willie
    CIS: 2007 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PROCEEDINGS, 2007, : 232 - +
  • [29] Video mining with frequent itemset configurations
    Quack, Till
    Ferrari, Vittorio
    Van Gool, Luc
    IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2006, 4071 : 360 - 369
  • [30] Frequent itemset mining with bit search
    Venkatesan, N.
    Ramaraj
    Journal of Theoretical and Applied Information Technology, 41 (01): : 111 - 121