Chemistry of NO2 on oxide surfaces:: Formation of NO3 on TiO2(110) and NO2⇆O vacancy interactions

被引:231
|
作者
Rodriguez, JA [1 ]
Jirsak, T
Liu, G
Hrbek, J
Dvorak, J
Maiti, A
机构
[1] Brookhaven Natl Lab, Dept Chem, Upton, NY 11953 USA
[2] Mol Simulat Inc, San Diego, CA 92121 USA
关键词
D O I
10.1021/ja011131i
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synchrotron-based high-resolution photoemission, X-ray absorption near-edge spectroscopy, and first-principles density functional (DF) slab calculations were used to study the interaction of NO2 with a TiO2(110) single crystal and powders, of titania. The main product of the adsorption of NO2 on TiO2(110) is surface nitrate with a small amount of chemisorbed NO2. A similar result is obtained after the reaction of NO2 with polycrystalline powders of TiO2 or other oxide powders. This trend, however, does not imply that the metal centers of the oxides are unreactive toward NO2. An unexpected mechanism is seen for the formation of NO3. Photoemission data and DF calculations indicate that the surface nitrate forms through the disproportionation of NO2 on Ti sites (2NO(2,ads) --> NO3,ads + NOgas) rather than direct adsorption of NO2 on O centers of titania. Complex interactions take place between NO2 and O vacancies of TiO2(110). Electronic states associated with O vacancies play a predominant role in the bonding and surface chemistry of NO2. The adsorbed NO2, on its part, affects the thermochemical stability of O vacancies, facilitating their migration from the bulk to the surface of titania. The behavior of the NO2/titania system illustrates the importance of surface and subsurface defects when using an oxide for trapping or destroying NOx species in the prevention of environmental pollution (DeNOx operations).
引用
收藏
页码:9597 / 9605
页数:9
相关论文
共 50 条
  • [41] Nanohybrid TiO2/carbon black sensor for NO2 gas
    Wei-Jen Liou
    China Particuology, 2007, (03) : 225 - 229
  • [42] Investigation of NO and NO2 adsorption mechanisms on TiO2 at room temperature
    Sivachandiran, L.
    Thevenet, F.
    Gravejat, P.
    Rousseau, A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 : 196 - 204
  • [43] Nanohybrid TiO2/carbon black sensor for NO2 gas
    Liou, Wei-Jen
    Lin, Hong-Ming
    CHINA PARTICUOLOGY, 2007, 5 (03): : 225 - 229
  • [44] Formation and dimerization of NO2 - A general chemistry experiment
    Hennis, AD
    Highberger, CS
    Schreiner, S
    JOURNAL OF CHEMICAL EDUCATION, 1997, 74 (11) : 1340 - 1342
  • [45] MUTUAL SYSTEM TL, SR=NO2 NO3
    GRINKO, LS
    PROTSENK.PI
    UKRAINSKII KHIMICHESKII ZHURNAL, 1973, 39 (04): : 327 - 330
  • [46] ROLE OF NO3 IN THE THERMAL DECOMPOSITION OF NO2 - REPLY
    ASHMORE, PG
    LEVITT, BP
    JOURNAL OF CHEMICAL PHYSICS, 1957, 27 (01): : 318 - 318
  • [47] NO3 AND NO2 IN THE MID-PACIFIC TROPOSPHERE
    NOXON, JF
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC15) : 1017 - 1021
  • [48] Dynamics and chemistry of O2 on TiO2(110) rutile.
    Wang, Y
    Pillay, D
    Hwang, GS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U757 - U757
  • [49] CRYSTAL-STRUCTURE OF K2PB(NO2)3(NO3).H2O
    NARDELLI, M
    PELIZZI, G
    INORGANICA CHIMICA ACTA-ARTICLES, 1980, 38 (01): : 15 - 19
  • [50] Photocatalytic Oxidation of NO2 on TiO2: Evidence of a New Source of N2O5
    Chu, Biwu
    Liu, Yuan
    Li, Hao
    Jia, Yongcheng
    Liu, Jun
    Cao, Qing
    Chen, Tianzeng
    Zhang, Peng
    Ma, Qingxin
    Zeng, Xiao Cheng
    Francisco, Joseph S.
    He, Hong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (25)