Chemistry of NO2 on oxide surfaces:: Formation of NO3 on TiO2(110) and NO2⇆O vacancy interactions

被引:231
|
作者
Rodriguez, JA [1 ]
Jirsak, T
Liu, G
Hrbek, J
Dvorak, J
Maiti, A
机构
[1] Brookhaven Natl Lab, Dept Chem, Upton, NY 11953 USA
[2] Mol Simulat Inc, San Diego, CA 92121 USA
关键词
D O I
10.1021/ja011131i
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synchrotron-based high-resolution photoemission, X-ray absorption near-edge spectroscopy, and first-principles density functional (DF) slab calculations were used to study the interaction of NO2 with a TiO2(110) single crystal and powders, of titania. The main product of the adsorption of NO2 on TiO2(110) is surface nitrate with a small amount of chemisorbed NO2. A similar result is obtained after the reaction of NO2 with polycrystalline powders of TiO2 or other oxide powders. This trend, however, does not imply that the metal centers of the oxides are unreactive toward NO2. An unexpected mechanism is seen for the formation of NO3. Photoemission data and DF calculations indicate that the surface nitrate forms through the disproportionation of NO2 on Ti sites (2NO(2,ads) --> NO3,ads + NOgas) rather than direct adsorption of NO2 on O centers of titania. Complex interactions take place between NO2 and O vacancies of TiO2(110). Electronic states associated with O vacancies play a predominant role in the bonding and surface chemistry of NO2. The adsorbed NO2, on its part, affects the thermochemical stability of O vacancies, facilitating their migration from the bulk to the surface of titania. The behavior of the NO2/titania system illustrates the importance of surface and subsurface defects when using an oxide for trapping or destroying NOx species in the prevention of environmental pollution (DeNOx operations).
引用
收藏
页码:9597 / 9605
页数:9
相关论文
共 50 条
  • [31] Heterogeneous interactions of NO2 with aqueous surfaces.
    Cheung, JL
    Li, YQ
    Boniface, J
    Shi, Q
    Davidovits, P
    Worsnop, DR
    Jayne, JT
    Kolb, CE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U315 - U315
  • [32] ELECTRON AFFINITIES OF O2, O3, NO, NO2, NO3 BY ENDOTHERMIC CHARGE TRANSFER
    BERKOWIT.J
    CHUPKA, WA
    GUTMAN, D
    JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (06): : 2733 - &
  • [33] Interactions of HCOOH with stoichiometric and defective TiO2(110) surfaces
    Wang, LQ
    Ferris, KF
    Shultz, AN
    Baer, DR
    Engelhard, MH
    SURFACE SCIENCE, 1997, 380 (2-3) : 352 - 364
  • [34] New volatile nitronium nitratometalates:: NO2[Fe(NO3)4] and NO2[Zr(NO3)5] -: Synthesis and crystal structure
    Tikhomirov, G
    Morozov, I
    Znamenkov, K
    Kemnitz, E
    Troyanov, S
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2002, 628 (04): : 872 - 876
  • [35] Sputtering-induced vacancy cluster formation on TiO2(110)
    Karmakar, P.
    Liu, G. F.
    Yarmoff, J. A.
    PHYSICAL REVIEW B, 2007, 76 (19)
  • [36] CHEMISTRY OF TIO2 SURFACES
    BOEHM, HP
    HERRMANN, M
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1964, 3 (09) : 646 - &
  • [37] EPR study of TiO2 based nanotubes and NO2 adsorption
    Cevc, P
    Umek, P
    Blinc, R
    Jesih, A
    Jancar, B
    Arcon, D
    ELECTRONIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES, 2004, 723 : 302 - 305
  • [38] Influence of NO2 on the hydrolysis of isocyanic acid over TiO2
    Piazzesi, Gaia
    Elsener, Martin
    Kroecher, Oliver
    Wokaun, Alexander
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 65 (3-4) : 169 - 174
  • [39] TiO2/ZnO heterostructure nanowire based NO2 sensor
    Ramgir, Niranjan
    Bhusari, R.
    Rawat, N. S.
    Patil, S. J.
    Debnath, A. K.
    Gadkari, S. C.
    Muthe, K. P.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 106
  • [40] Acetaldehyde adsorption on TiO2: Influence of NO2 preliminary adsorption
    Thevenet, F.
    Olivier, L.
    Batault, F.
    Sivachandiran, L.
    Locoge, N.
    CHEMICAL ENGINEERING JOURNAL, 2015, 281 : 126 - 133