Enriques involutions on pencils of K3 surfaces

被引:1
|
作者
Festi, Dino [1 ]
Veniani, Davide Cesare [2 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Saldini 50, I-20133 Milan, Italy
[2] Univ Stuttgart, Inst Diskrete Strukturen & Symbol Rechnen, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
elliptic fibration; Enriques surface; K3; surface; transcendental lattice; AUTOMORPHISMS;
D O I
10.1002/mana.202100140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The three pencils of K3 surfaces of minimal discriminant whose general element covers at least one Enriques surface are Kondo's pencils I and II, and the Apery-Fermi pencil. We enumerate and investigate all Enriques surfaces covered by their general elements.
引用
收藏
页码:1312 / 1326
页数:15
相关论文
共 50 条
  • [31] Symplectic involutions on deformations of K3[2]
    Mongardi, Giovanni
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (04): : 1472 - 1485
  • [32] PENCILS AND NETS ON CURVES ARISING FROM RANK 1 SHEAVES ON K3 SURFACES
    Rasmussen, Nils Henry
    MATHEMATICA SCANDINAVICA, 2018, 122 (02) : 197 - 212
  • [33] Liftings of simple normal crossing log K3 and log Enriques surfaces in mixed characteristics
    Nakkajima, Y
    JOURNAL OF ALGEBRAIC GEOMETRY, 2000, 9 (02) : 355 - 393
  • [34] Pencils of small degree on curves on unnodal Enriques surfaces
    Rasmussen, Nils Henry
    Zhou, Shengtian
    ADVANCES IN GEOMETRY, 2015, 15 (03) : 281 - 292
  • [35] K3 SURFACES
    BEAUVILLE, A
    ASTERISQUE, 1983, (105-) : 217 - 229
  • [36] Hypergeometric decomposition of symmetric K3 quartic pencils
    Charles F. Doran
    Tyler L. Kelly
    Adriana Salerno
    Steven Sperber
    John Voight
    Ursula Whitcher
    Research in the Mathematical Sciences, 2020, 7
  • [37] Hypergeometric decomposition of symmetric K3 quartic pencils
    Doran, Charles F.
    Kelly, Tyler L.
    Salerno, Adriana
    Sperber, Steven
    Voight, John
    Whitcher, Ursula
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2020, 7 (02)
  • [38] PENCILS OF MINIMAL DEGREE ON CURVES ON A K3 SURFACE
    CILIBERTO, C
    PARESCHI, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 460 : 15 - 36
  • [39] Brill–Noether general K3 surfaces with the maximal number of elliptic pencils of minimal degree
    Michael Hoff
    Andreas Leopold Knutsen
    Geometriae Dedicata, 2021, 213 : 1 - 20
  • [40] Classification of Enriques surfaces covered by the supersingular K3 surface with Artin invariant 1 in characteristic 2
    Kondo, Shigeyuki
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (01) : 301 - 328