Hypergeometric decomposition of symmetric K3 quartic pencils

被引:6
|
作者
Doran, Charles F. [1 ]
Kelly, Tyler L. [2 ]
Salerno, Adriana [3 ]
Sperber, Steven [4 ]
Voight, John [5 ]
Whitcher, Ursula [6 ]
机构
[1] Univ Alberta, Dept Math, Edmonton, AB, Canada
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[3] Bates Coll, Dept Math, 3 Andrews Rd, Lewiston, ME 04240 USA
[4] Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USA
[5] Dartmouth Coll, Dept Math, 6188 Kemeny Hall, Hanover, NH 03755 USA
[6] Amer Math Soc, Math Reviews, 416 Fourth St, Ann Arbor, MI 48103 USA
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
MONOMIAL DEFORMATIONS; HYPERSURFACES; NUMBER; QUOTIENTS; FAMILIES;
D O I
10.1007/s40687-020-0203-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the hypergeometric functions associated to five one-parameter deformations of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard-Fuchs differential equations; we count points using Gauss sums and rewrite this in terms of finite-field hypergeometric sums; then we match up each differential equation to a factor of the zeta function, and we write this in terms of global L-functions. This computation gives a complete, explicit description of the motives for these pencils in terms of hypergeometric motives.
引用
收藏
页数:81
相关论文
共 50 条
  • [1] Hypergeometric decomposition of symmetric K3 quartic pencils
    Charles F. Doran
    Tyler L. Kelly
    Adriana Salerno
    Steven Sperber
    John Voight
    Ursula Whitcher
    Research in the Mathematical Sciences, 2020, 7
  • [2] K3 polytopes and their quartic surfaces
    Balletti, Gabriele
    Panizzut, Marta
    Sturmfels, Bernd
    ADVANCES IN GEOMETRY, 2021, 21 (01) : 85 - 98
  • [3] Enriques involutions on pencils of K3 surfaces
    Festi, Dino
    Veniani, Davide Cesare
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (07) : 1312 - 1326
  • [4] Lines on K3 quartic surfaces in characteristic 3
    Davide Cesare Veniani
    manuscripta mathematica, 2022, 167 : 675 - 701
  • [5] Lines on K3 quartic surfaces in characteristic 3
    Veniani, Davide Cesare
    MANUSCRIPTA MATHEMATICA, 2022, 167 (3-4) : 675 - 701
  • [6] Hypergeometric groups and dynamics on K3 surfaces
    Katsunori Iwasaki
    Yuta Takada
    Mathematische Zeitschrift, 2022, 301 : 835 - 891
  • [7] Hypergeometric groups and dynamics on K3 surfaces
    Iwasaki, Katsunori
    Takada, Yuta
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 835 - 891
  • [8] PENCILS OF MINIMAL DEGREE ON CURVES ON A K3 SURFACE
    CILIBERTO, C
    PARESCHI, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 460 : 15 - 36
  • [9] Lines on K3 Quartic Surfaces in Characteristic 2
    Veniani, Davide Cesare
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (02): : 551 - 581
  • [10] Quartic K3 surfaces without nontrivial automorphisms
    van Luijk, Ronald
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) : 423 - 439