Hypergeometric decomposition of symmetric K3 quartic pencils

被引:6
|
作者
Doran, Charles F. [1 ]
Kelly, Tyler L. [2 ]
Salerno, Adriana [3 ]
Sperber, Steven [4 ]
Voight, John [5 ]
Whitcher, Ursula [6 ]
机构
[1] Univ Alberta, Dept Math, Edmonton, AB, Canada
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[3] Bates Coll, Dept Math, 3 Andrews Rd, Lewiston, ME 04240 USA
[4] Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USA
[5] Dartmouth Coll, Dept Math, 6188 Kemeny Hall, Hanover, NH 03755 USA
[6] Amer Math Soc, Math Reviews, 416 Fourth St, Ann Arbor, MI 48103 USA
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
MONOMIAL DEFORMATIONS; HYPERSURFACES; NUMBER; QUOTIENTS; FAMILIES;
D O I
10.1007/s40687-020-0203-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the hypergeometric functions associated to five one-parameter deformations of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard-Fuchs differential equations; we count points using Gauss sums and rewrite this in terms of finite-field hypergeometric sums; then we match up each differential equation to a factor of the zeta function, and we write this in terms of global L-functions. This computation gives a complete, explicit description of the motives for these pencils in terms of hypergeometric motives.
引用
收藏
页数:81
相关论文
共 50 条