GPU-Accelerated Incremental Euclidean Distance Transform for Online Motion Planning of Mobile Robots

被引:10
|
作者
Chen, Yizhou [1 ]
Lai, Shupeng [2 ]
Cui, Jinqiang [3 ]
Wang, Biao [3 ,4 ]
Chen, Ben M. [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong 999077, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210095, Jiangsu, Peoples R China
关键词
Mapping; motion and path planning; ALGORITHMS; FIELD;
D O I
10.1109/LRA.2022.3177852
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we present a volumetric mapping system that effectively calculates Occupancy Grid Maps (OGMs) and Euclidean Distance Transforms (EDTs) with parallel computing. Unlike these mappers for high-precision structural reconstruction, our system incrementally constructs global EDT and outputs high-frequency local distance information for online robot motion planning. The proposed system receives multiple types of sensor inputs and constructs OGM without down-sampling. Using GPU programming techniques, the system quickly computes EDT in parallel within local volume. The new observation is continuously integrated into the global EDT using the parallel wavefront algorithm while preserving the historical observations. Experiments with datasets have shown that our proposed approach outperforms existing state-of-the-art robot mapping systems and is particularly suitable for mapping unexplored areas. In its actual implementations on aerial and ground vehicles, the proposed system achieves real-time performance with limited onboard computational resources.
引用
收藏
页码:6894 / 6901
页数:8
相关论文
共 50 条
  • [21] Motion planning of mobile robots
    Larin, VB
    ITSC 2004: 7TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, 2004, : 23 - 28
  • [22] Quadrant based incremental planning for mobile robots
    P.Raja
    M.Abhilash
    K.Ravi Shankar
    Alameluvari Adarsh
    Journal of Central South University, 2014, 21 (05) : 1792 - 1803
  • [23] Quadrant based incremental planning for mobile robots
    Raja, P.
    Abhilash, M.
    Shankar, K. Ravi
    Adarsh, Alameluvari
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (05) : 1792 - 1803
  • [24] Quadrant based incremental planning for mobile robots
    P. Raja
    M. Abhilash
    K. Ravi Shankar
    Alameluvari Adarsh
    Journal of Central South University, 2014, 21 : 1792 - 1803
  • [25] GPU-Accelerated High-Throughput Online Stream Data Processing
    Chen, Zhenhua
    Xu, Jielong
    Tang, Jian
    Kwiat, Kevin A.
    Kamhoua, Charles Alexandre
    Wang, Chonggang
    IEEE TRANSACTIONS ON BIG DATA, 2018, 4 (02) : 191 - 202
  • [26] On the Use of a GPU-Accelerated Mobile Device Processor for Sound Source Localization
    Belloch, Jose A.
    Badia, Jose M.
    Igual, Francisco D.
    Cobos, Maximo
    Quintana-Orti, Enrique S.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 586 - 595
  • [27] GPU-accelerated and mixed norm regularized online extreme learning machine
    Polat, Onder
    Kayhan, Sema Koc
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [28] GPU-Accelerated Rapid Planar Region Extraction for Dynamic Behaviors on Legged Robots
    Mishra, Bhavyansh
    Calvert, Duncan
    Bertrand, Sylvain
    McCrory, Stephen
    Griffin, Robert
    Sevil, Hakki Erhan
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 8493 - 8499
  • [29] GPU-Accelerated Research Eclipse Treatment Planning System for Higher-Dimensional Motion-Adaptive Inverse Treatment Planning
    Hagan, A.
    Sawant, A.
    Folkerts, M.
    Svatos, M.
    Modiri, A.
    MEDICAL PHYSICS, 2017, 44 (06) : 3294 - 3294
  • [30] GPU-Accelerated Vision for Robots: Improving System Throughput Using OpenCV and CUDA
    Cervera, Enric
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2020, 27 (02) : 151 - 158