GPU-Accelerated Incremental Euclidean Distance Transform for Online Motion Planning of Mobile Robots

被引:10
|
作者
Chen, Yizhou [1 ]
Lai, Shupeng [2 ]
Cui, Jinqiang [3 ]
Wang, Biao [3 ,4 ]
Chen, Ben M. [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong 999077, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210095, Jiangsu, Peoples R China
关键词
Mapping; motion and path planning; ALGORITHMS; FIELD;
D O I
10.1109/LRA.2022.3177852
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we present a volumetric mapping system that effectively calculates Occupancy Grid Maps (OGMs) and Euclidean Distance Transforms (EDTs) with parallel computing. Unlike these mappers for high-precision structural reconstruction, our system incrementally constructs global EDT and outputs high-frequency local distance information for online robot motion planning. The proposed system receives multiple types of sensor inputs and constructs OGM without down-sampling. Using GPU programming techniques, the system quickly computes EDT in parallel within local volume. The new observation is continuously integrated into the global EDT using the parallel wavefront algorithm while preserving the historical observations. Experiments with datasets have shown that our proposed approach outperforms existing state-of-the-art robot mapping systems and is particularly suitable for mapping unexplored areas. In its actual implementations on aerial and ground vehicles, the proposed system achieves real-time performance with limited onboard computational resources.
引用
收藏
页码:6894 / 6901
页数:8
相关论文
共 50 条
  • [11] GPU-Accelerated Interactive Visualization and Planning of Neurosurgical Interventions
    Rincon-Nigro, Mario
    Navkar, Nikhil V.
    Tsekos, Nikolaos V.
    Deng, Zhigang
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2014, 34 (01) : 22 - 31
  • [12] GPU-Accelerated 3D Normal Distributions Transform
    Nguyen, Anh
    Cano, Abraham Monrroy
    Edahiro, Masato
    Kato, Shinpei
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2023, 35 (02) : 445 - 459
  • [13] GPU-accelerated Kendall distance computation for large or sparse data
    Akhtyamov, Pavel
    Nabi, Ausaaf
    Gafurov, Vladislav
    Sizykh, Alexey
    Favorov, Alexander
    Medvedeva, Yulia
    Stupnikov, Alexey
    GIGASCIENCE, 2024, 13
  • [14] A GPU-accelerated Approximate Algorithm for Incremental Learning of Gaussian Mixture Model
    Chen, Chunlei
    Mu, Dejun
    Zhang, Huixiang
    Hong, Bo
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW), 2012, : 1937 - 1943
  • [15] Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication
    Tan, Nigel
    Luettgau, Jakob
    Marquez, Jack
    Terianishi, Keita
    Morales, Nicolas
    Bhowmick, Sanjukta
    Cappello, Franck
    Taufer, Michela
    Nicolae, Bogdan
    PROCEEDINGS OF THE 52ND INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2023, 2023, : 665 - 674
  • [16] GPU-Accelerated Incremental Correlation Clustering of Large Data with Visual Feedback
    Papenhausen, Eric
    Wang, Bing
    Ha, Sungsoo
    Zelenyuk, Alla
    Imre, Dan
    Mueller, Klaus
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [17] Performance comparison of GPU-accelerated fast motion estimation method
    Chen, Pengcheng
    Peng, Bo
    Zou, Anxin
    Xu, Luwen
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 660 - 665
  • [18] GPU-Accelerated Auto-Segmentation for Online Adaptive Radiotherapy
    Godley, A.
    Peng, C.
    Ahunbay, E.
    Li, X.
    MEDICAL PHYSICS, 2010, 37 (06) : 3188 - +
  • [19] Development of GPU-accelerated localization system for autonomous mobile robot
    Rud, Maxim N.
    Pantiykchin, Alexander R.
    2014 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, AUTOMATION AND CONTROL SYSTEMS (MEACS), 2014,
  • [20] Motion planning for mobile robots
    Lunenburg J.J.M.
    Coenen S.A.M.
    Naus G.
    Van De Molengraft M.J.G.
    Steinbuch M.
    IEEE Robotics and Automation Magazine, 2016, 23 (04): : 107 - 117