Budgeted influence and earned benefit maximization with tags in social networks

被引:2
|
作者
Banerjee, Suman [1 ]
Pal, Bithika [2 ]
机构
[1] Indian Inst Technol Jammu, Dept Comp Sci & Engn, Jammu, Jammu & Kashmir, India
[2] Indian Inst Technol, Dept Comp Sci & Engn, Kharagpur, W Bengal, India
关键词
Social network; Influence probability; Seed set; MIA model; PROFIT MAXIMIZATION;
D O I
10.1007/s13278-021-00850-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Influence Maximization Problem aims at identifying a limited number of highly influential users who will be working for diffusion agents to maximize the influence. In case of Budgeted Influence Maximization (BIM), the users of the network have a cost and influential user selection needs to be done within a given budget. In case of Earned Benefit Maximization (EBM) Problem, a set of target users along with their benefit value is given and the aim is to choose highly influential users within an allocated budget to maximize the earned benefit. In this paper, we study the BIM and EBM Problem under the tag-specific edge probability setting, which means instead of a single edge probability a set of probability values (each one for a specific context e.g., 'games,' academics; etc.) per edge is given. The aim is to identify the influential tags and users for maximizing the influence and earned benefit. Considering the realistic fact that different tags have a different impact on different communities of a social network, we propose two solution methodologies and one pruning technique. A detailed analysis of all the solution approaches has been done. An extensive set of experiments have been carried out with three benchmark datasets. From the experiments, we observe that the proposed solution approaches outperform baseline methods (e.g., random node-random tag, high-degree node-high-frequency tag, high-degree node-high-frequency tag with community). For the tag-based BIM Problem the improvement is upto 8% in terms of number of influenced nodes and for the tag-based EBM Problem the improvement is upto 15% in terms of earned benefit.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Influence maximization on social networks: A study
    Singh S.S.
    Singh K.
    Kumar A.
    Biswas B.
    Recent Advances in Computer Science and Communications, 2021, 14 (01) : 13 - 29
  • [22] Efficient Influence Maximization in Social Networks
    Chen, Wei
    Wang, Yajun
    Yang, Siyu
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 199 - 207
  • [23] Targeted Influence Maximization in Social Networks
    Song, Chonggang
    Hsu, Wynne
    Lee, Mong Li
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1683 - 1692
  • [24] Influence maximization with deactivation in social networks
    Taninmis, Kubra
    Aras, Necati
    Altinel, I. K.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 278 (01) : 105 - 119
  • [25] Matching influence maximization in social networks
    Rao, Guoyao
    Wang, Yongcai
    Chen, Wenping
    Li, Deying
    Wu, Weili
    THEORETICAL COMPUTER SCIENCE, 2021, 857 : 71 - 86
  • [26] Influence maximization for large social networks
    Yue, Feifei
    Tu, Zhibing
    Feng, Shengzhong
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1823 - 1830
  • [27] Post and repost: A holistic view of budgeted influence maximization
    Shi, Qihao
    Wang, Can
    Chen, Jiawei
    Feng, Yan
    Chen, Chun
    NEUROCOMPUTING, 2019, 338 : 92 - 100
  • [28] Efficient algorithms for influence maximization in social networks
    Chen, Yi-Cheng
    Peng, Wen-Chih
    Lee, Suh-Yin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 33 (03) : 577 - 601
  • [29] Collective Influence Maximization in Mobile Social Networks
    Wu, Xudong
    Fu, Luoyi
    Wang, Shuaiqi
    Jiang, Bo
    Wang, Xinbing
    Chen, Guihai
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (02) : 797 - 812
  • [30] Influence Maximization with Priority in Online Social Networks
    Pham, Canh V.
    Ha, Dung K. T.
    Vu, Quang C.
    Su, Anh N.
    Hoang, Huan X.
    ALGORITHMS, 2020, 13 (08)