ROBUST CELL SEGMENTATION FOR HISTOLOGICAL IMAGES OF GLIOBLASTOMA

被引:6
|
作者
Kong, Jun [1 ]
Zhang, Pengyue [2 ]
Liang, Yanhui [2 ]
Teodoro, George [3 ]
Brat, Daniel J. [1 ,4 ]
Wang, Fusheng [2 ]
机构
[1] Emory Univ, Dept Biomed Informat, Atlanta, GA 30322 USA
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[3] Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil
[4] Emory Univ, Dept Pathol, Atlanta, GA 30322 USA
关键词
Histological Image; seed detection; cell segmentation; Hessian; iterative merging;
D O I
10.1109/ISBI.2016.7493444
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative analysis of GBM cells is an important avenue to extract latent histologic disease signatures to correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and accurate cell segmentation is required. In this paper, we present an automated cell segmentation method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM histology specimens. This method first detects cells with seed connectivity, distance constraints, image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries are deformed with an improved variational level set method that can handle clumped cells. We test our method on 40 histological images of GBM with human annotations. The validation results suggest that our cell segmentation method is promising and represents an advance in quantitative cancer research.
引用
收藏
页码:1041 / 1045
页数:5
相关论文
共 50 条
  • [41] COMPARISON OF SEGMENTATION METHODS FOR TISSUE MICROSCOPY IMAGES OF GLIOBLASTOMA CELLS
    Baltissen, D.
    Wollmann, T.
    Gunkel, M.
    Chung, I.
    Erfle, H.
    Rippe, K.
    Rohr, K.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 396 - 399
  • [42] AI-based segmentation of intraoperative glioblastoma hyperspectral images
    La Salvia, Marco
    Torti, Emanuele
    Gazzoni, Marco
    Marenzi, Elisa
    Leon, Raquel
    Ortega, Samuel
    Fabelo, Himar
    Callico, Gustavo M.
    Leporati, Francesco
    HYPERSPECTRAL IMAGING AND APPLICATIONS II, 2022, 12338
  • [43] The Use of Deep Learning for Segmentation of Bone Marrow Histological Images
    Oszutowska-Mazurek, Dorota
    Knap, Oktawian
    ARTIFICIAL INTELLIGENCE TRENDS IN INTELLIGENT SYSTEMS, CSOC2017, VOL 1, 2017, 573 : 466 - 473
  • [44] Segmentation of Nuclei in Hepatic Histological Images Using Multimodal Method
    Takahashi, M.
    Koichi, J.
    Makino, Y.
    Kitani, T.
    Nakano, M.
    5TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, PTS 1 AND 2, 2012, 37 : 639 - +
  • [45] Segmentation and Classification of Mast Cells in Histological Images with Deep Learning
    Karimov, A. F.
    Manbatchurina, R. R.
    Simonova, K. A.
    Mishin, A. R.
    Donets, I., V
    Vlasova, A. A.
    Khramtsova, Y. S.
    Ushenin, K. S.
    PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019), 2019, 2174
  • [46] Blood Vessel Segmentation via Neural Network in Histological Images
    Roberto Rodríguez
    Teresa E. Alarcón
    Juan J. Abad
    Journal of Intelligent and Robotic Systems, 2003, 36 : 451 - 465
  • [47] Blood vessel segmentation via neural network in histological images
    Rodríguez, R
    Alarcón, TE
    Abad, JJ
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2003, 36 (04) : 451 - 465
  • [48] Automated Brain Region Segmentation for Single Cell Resolution Histological Images Based on Markov Random Field
    Xu, Xiaofeng
    Guan, Yue
    Gong, Hui
    Feng, Zhao
    Shi, Wenjuan
    Li, Anan
    Ren, Miao
    Yuan, Jing
    Luo, Qingming
    NEUROINFORMATICS, 2020, 18 (02) : 181 - 197
  • [49] Unsupervised segmentation method for cuboidal cell nuclei in histological prostate images based on minimum cross entropy
    Latorre de Oliveira, Domingos Lucas
    do Nascimento, Marcelo Zanchetta
    Neves, Leandro Alves
    de Godoy, Moacir Fernandes
    Ferraz de Arruda, Pedro Francisco
    de Santi Neto, Dalisio
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (18) : 7331 - 7340
  • [50] Automated Brain Region Segmentation for Single Cell Resolution Histological Images Based on Markov Random Field
    Xiaofeng Xu
    Yue Guan
    Hui Gong
    Zhao Feng
    Wenjuan Shi
    Anan Li
    Miao Ren
    Jing Yuan
    Qingming Luo
    Neuroinformatics, 2020, 18 : 181 - 197