ROBUST CELL SEGMENTATION FOR HISTOLOGICAL IMAGES OF GLIOBLASTOMA

被引:6
|
作者
Kong, Jun [1 ]
Zhang, Pengyue [2 ]
Liang, Yanhui [2 ]
Teodoro, George [3 ]
Brat, Daniel J. [1 ,4 ]
Wang, Fusheng [2 ]
机构
[1] Emory Univ, Dept Biomed Informat, Atlanta, GA 30322 USA
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[3] Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil
[4] Emory Univ, Dept Pathol, Atlanta, GA 30322 USA
关键词
Histological Image; seed detection; cell segmentation; Hessian; iterative merging;
D O I
10.1109/ISBI.2016.7493444
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative analysis of GBM cells is an important avenue to extract latent histologic disease signatures to correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and accurate cell segmentation is required. In this paper, we present an automated cell segmentation method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM histology specimens. This method first detects cells with seed connectivity, distance constraints, image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries are deformed with an improved variational level set method that can handle clumped cells. We test our method on 40 histological images of GBM with human annotations. The validation results suggest that our cell segmentation method is promising and represents an advance in quantitative cancer research.
引用
收藏
页码:1041 / 1045
页数:5
相关论文
共 50 条
  • [21] Segmentation of Cytological and Histological Images of Breast Cancer Cells
    Berersky, Oleg
    Batko, Yuriy
    Melnyk, Grigoriy
    Verbovyy, Sergiy
    Haida, Lilia
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOLS 1-2, 2015, : 287 - 292
  • [22] Stacked Autoencoder for Segmentation of Bone Marrow Histological Images
    Oszutowska-Mazurek, Dorota
    Mazurek, Przemyslaw
    Knap, Oktawian
    ARTIFICIAL INTELLIGENCE AND ALGORITHMS IN INTELLIGENT SYSTEMS, 2019, 764 : 425 - 435
  • [23] HoLy-Net: Segmentation of histological images of diffuse large B-cell lymphoma
    Naji, Hussein
    Sancere, Lucas
    Simon, Adrian
    Buettner, Reinhard
    Eich, Marie -Lisa
    Lohneis, Philipp
    Bozek, Katarzyna
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [24] A Robust algorithm for knot segmentation in CT images
    Un algorithme robuste de segmentation des noeuds du bois sur des images obtenues par tomographie X
    1600, Ecole Nationale du Genie Rural des Eaux et des Forets (68):
  • [25] Robust segmentation of tubular structures in medical images
    Fahmi, Rachid
    Jerebko, Anna
    Wolf, Matthias
    Farag, Aly A.
    MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [26] Robust fuzzy segmentation of magnetic resonance images
    Pham, DL
    FOURTEENTH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2001, : 127 - 131
  • [27] Two Robust Techniques for Segmentation of Biomedical Images
    Rodriguez, Roberto
    Castillo, Patricio J.
    Guerra, Valia
    Suarez, Ana G.
    Izquierdo, Ebroul
    COMPUTACION Y SISTEMAS, 2006, 9 (04): : 355 - 369
  • [28] On a Methodology for Robust Segmentation of Nonideal Iris Images
    Zuo, Jinyu
    Schmid, Natalia A.
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 703 - 718
  • [29] A robust segmentation algorithm for images with intensity inhomogeneity
    Tian Y.
    Zhou M.-Q.
    Duan F.-Q.
    Wu Z.-K.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2011, 33 (06): : 1401 - 1406
  • [30] Two-phase compression of histological images with MDL ranking of segmentation images
    Tabus, I.
    Hukkanen, J.
    Schiopu, I.
    19TH INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS 2013), 2013, : 331 - 338