The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism

被引:29
|
作者
Fletcher, Rachel S. [1 ]
Lavery, Gareth G. [1 ]
机构
[1] Univ Birmingham, Inst Metab & Syst Res, Birmingham, W Midlands, England
基金
英国惠康基金;
关键词
NAD(+); metabolism; nicotinamide riboside; energy; PHOSPHORIBOSYLTRANSFERASE NAMPT; SKELETAL-MUSCLE; MITOCHONDRIAL-FUNCTION; THERAPEUTIC TARGET; ENERGY HOMEOSTASIS; FATTY LIVER; CELL-DEATH; LIFE-SPAN; BIOSYNTHESIS; SIRT1;
D O I
10.1530/JME-18-0085
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The concept of replenishing or elevating NAD(+) availability to combat metabolic disease and ageing is an area of intense research. This has led to a need to define the endogenous regulatory pathways and mechanisms cells and tissues utilise to maximise NAD(+) availability such that strategies to intervene in the clinical setting are able to be fully realised. This review discusses the importance of different salvage pathways involved in metabolising the vitamin B3 class of NAD(+) precursor molecules, with a particular focus on the recently identified nicotinamide riboside kinase pathway at both a tissue-specific and systemic level.
引用
收藏
页码:R107 / R121
页数:15
相关论文
共 50 条
  • [31] Regulation of yeast sirtuins by NAD+ metabolism and calorie restriction
    Lu, Shu-Ping
    Lin, Su-Ju
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (08): : 1567 - 1575
  • [32] Intravenous nicotinamide riboside elevates mouse skeletal muscle NAD+ without impacting respiratory capacity or insulin sensitivity
    Damgaard, Mads V.
    Nielsen, Thomas S.
    Basse, Astrid L.
    Chubanava, Sabina
    Trost, Kajetan
    Moritz, Thomas
    Dellinger, Ryan W.
    Larsen, Steen
    Treebak, Jonas T.
    ISCIENCE, 2022, 25 (02)
  • [33] Metabolism of NAD+ in nuclei of Saccharomyces cerevisiae during stimulation of its biosynthesis by nicotinamide
    Gulyamova, T.G.
    Ruzieva, D.M.
    Nasmetova, S.M.
    Shakirzyanova, M.R.
    Kerbalaeva, A.M.
    Biokhimiya, 2001, 66 (09): : 1202 - 1205
  • [34] Metabolism of NAD+ in Nuclei of Saccharomyces cerevisiae during Stimulation of Its Biosynthesis by Nicotinamide
    T. G. Gulyamova
    D. M. Ruzieva
    S. M. Nasmetova
    M. R. Shakirzyanova
    A. M. Kerbalaeva
    Biochemistry (Moscow), 2001, 66 : 979 - 981
  • [35] NAD+ replacement therapy with nicotinamide riboside does not improve cardiac function in a model of mitochondrial heart disease.
    Stram, Amanda R.
    Pride, P. Melanie
    Payne, R. Mark
    FASEB JOURNAL, 2017, 31
  • [36] Metabolism of NAD+ in nuclei of Saccharomyces cerevisiae during stimulation of its biosynthesis by nicotinamide
    Gulyamova, TG
    Ruzieva, DM
    Nasmetova, SM
    Shakirzyanova, MR
    Kerbalaeva, AM
    BIOCHEMISTRY-MOSCOW, 2001, 66 (09) : 979 - 981
  • [37] NAD+ Metabolism and Signaling
    Migaud, Marie
    Kraus, W. Lee
    Chen, Danica
    Ziegler, Mathias
    Guarente, Leonard P.
    Bohr, Villhelm A.
    Verdin, Eric
    Gorbunova, Vera
    Seluanov, Andrei
    CELL METABOLISM, 2019, 30 (01) : 7 - 9
  • [38] NICOTINAMIDE ADENINE-DINUCLEOTIDE (NAD+) - FORMAL POTENTIAL OF THE NAD+ NAD. COUPLE AND NAD. DIMERIZATION RATE
    JENSEN, MA
    ELVING, PJ
    BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 764 (03) : 310 - 315
  • [39] CONFORMATIONAL VARIABILITY OF NAD+ IN THE FREE AND BOUND-STATES - A NICOTINAMIDE SANDWICH IN NAD+ CRYSTALS
    PARTHASARATHY, R
    FRIDEY, SM
    SCIENCE, 1984, 226 (4677) : 969 - 971
  • [40] Activation of SIRT3 by the NAD+ Precursor Nicotinamide Riboside Protects from Noise-Induced Hearing Loss
    Brown, Kevin D.
    Maqsood, Sadia
    Huang, Jing-Yi
    Pan, Yong
    Harkcom, William
    Li, Wei
    Sauve, Anthony
    Verdin, Eric
    Jaffrey, Samie R.
    CELL METABOLISM, 2014, 20 (06) : 1059 - 1068