The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism

被引:29
|
作者
Fletcher, Rachel S. [1 ]
Lavery, Gareth G. [1 ]
机构
[1] Univ Birmingham, Inst Metab & Syst Res, Birmingham, W Midlands, England
基金
英国惠康基金;
关键词
NAD(+); metabolism; nicotinamide riboside; energy; PHOSPHORIBOSYLTRANSFERASE NAMPT; SKELETAL-MUSCLE; MITOCHONDRIAL-FUNCTION; THERAPEUTIC TARGET; ENERGY HOMEOSTASIS; FATTY LIVER; CELL-DEATH; LIFE-SPAN; BIOSYNTHESIS; SIRT1;
D O I
10.1530/JME-18-0085
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The concept of replenishing or elevating NAD(+) availability to combat metabolic disease and ageing is an area of intense research. This has led to a need to define the endogenous regulatory pathways and mechanisms cells and tissues utilise to maximise NAD(+) availability such that strategies to intervene in the clinical setting are able to be fully realised. This review discusses the importance of different salvage pathways involved in metabolising the vitamin B3 class of NAD(+) precursor molecules, with a particular focus on the recently identified nicotinamide riboside kinase pathway at both a tissue-specific and systemic level.
引用
收藏
页码:R107 / R121
页数:15
相关论文
共 50 条
  • [21] Induction of the nicotinamide riboside kinase NAD+ salvage pathway in a model of sarcoplasmic reticulum dysfunction
    Doig, Craig L.
    Zielinska, Agnieszka E.
    Fletcher, Rachel S.
    Oakey, Lucy A.
    Elhassan, Yasir S.
    Garten, Antje
    Cartwright, David
    Heising, Silke
    Alsheri, Ahmed
    Watson, David G.
    Prehn, Cornelia
    Adamski, Jerzy
    Tennant, Daniel A.
    Lavery, Gareth G.
    SKELETAL MUSCLE, 2020, 10 (01)
  • [22] Induction of the nicotinamide riboside kinase NAD+ salvage pathway in a model of sarcoplasmic reticulum dysfunction
    Craig L. Doig
    Agnieszka E. Zielinska
    Rachel S. Fletcher
    Lucy A. Oakey
    Yasir S. Elhassan
    Antje Garten
    David Cartwright
    Silke Heising
    Ahmed Alsheri
    David G. Watson
    Cornelia Prehn
    Jerzy Adamski
    Daniel A. Tennant
    Gareth G. Lavery
    Skeletal Muscle, 10
  • [23] Regulation of NAD+ metabolism in aging and disease
    Chu, Xiaogang
    Raju, Raghavan Pillai
    METABOLISM-CLINICAL AND EXPERIMENTAL, 2022, 126
  • [24] Regulation of and challenges in targeting NAD+ metabolism
    Migaud, Marie E.
    Ziegler, Mathias
    Baur, Joseph A.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2024, 25 (10) : 822 - 840
  • [25] The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity
    Canto, Caries
    Houtkooper, Riekelt H.
    Pirinen, Eija
    Youn, Dou Y.
    Oosterveer, Maaike H.
    Cen, Yana
    Fernandez-Marcos, Pablo J.
    Yamamoto, Hiroyasu
    Andreux, Penelope A.
    Cettour-Rose, Philippe
    Gademann, Karl
    Rinsch, Chris
    Schoonjans, Kristina
    Sauve, Anthony A.
    Auwerx, Johan
    CELL METABOLISM, 2012, 15 (06) : 838 - 847
  • [26] NAD+ augmentation with nicotinamide riboside improves lymphoid potential of Atm-/- and old mice HSCs
    Zong, Le
    Tanaka-Yano, Mayuri
    Park, Bongsoo
    Yanai, Hagai
    Turhan, Ferda T.
    Croteau, Deborah L.
    Tian, Jane
    Fang, Evandro F.
    Bohr, Vilhelm A.
    Beerman, Isabel
    NPJ AGING AND MECHANISMS OF DISEASE, 2021, 7 (01)
  • [27] NAD+, NAD+ recycling and brain metabolism
    Rae, C.
    Klugmann, M.
    Rowlands, B.
    JOURNAL OF NEUROCHEMISTRY, 2015, 134 : 263 - 263
  • [28] NAD+ Metabolism and Regulation: Lessons From Yeast
    Croft, Trevor
    Venkatakrishnan, Padmaja
    Lin, Su-Ju
    BIOMOLECULES, 2020, 10 (02)
  • [29] Role of the nicotinamide riboside kinase 2 in NAD metabolism in the heart in basal and pathological condition
    Deloux, R.
    Tannous, C.
    Karoui, A.
    Mougenot, N.
    Li, Z.
    Mericksay, M.
    EUROPEAN HEART JOURNAL, 2019, 40 : 3879 - 3879
  • [30] Regulation of Glucose Metabolism by NAD+ and ADP-Ribosylation
    Hopp, Ann-Katrin
    Grueter, Patrick
    Hottiger, Michael O.
    CELLS, 2019, 8 (08)