Highly Conductive 3D Printable Materials for 3D Structural Electronics

被引:22
|
作者
Baker, Daina, V [1 ]
Bao, Chao [2 ]
Kim, Woo Soo [2 ]
机构
[1] Simon Fraser Univ, Sch Sustainable Energy Engn, Surrey, BC V3T 0A3, Canada
[2] Simon Fraser Univ, Sch Mechatron Syst Engn, Surrey, BC V3T 0A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
3D printing; structural electronics; 3D printable conductor; printed electronics; conductive ink; conductive filament; COPPER NANOPARTICLES; REDUCTION; INK; MICROFABRICATION; OXIDATION; CIRCUITS; PATTERNS; METALS;
D O I
10.1021/acsaelm.1c00296
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
3D printing will be one of the key technologies in the next industrial revolution. It will usher us into an era of decentralized manufacturing, empowering individuals to manufacture in their communities. One area in particular that can benefit from 3D printing is the production of electronics. 3D printing allows for the fabrication of structural electronics, which have their components embedded in the 3D structured object. Recently spotlighted 3D structural printing technologies include fused filament fabrication and direct-ink writing to prepare 3D conductive traces. Highly conductive traces are imperative for achieving reliable 3D structural electronics. This Spotlight will overview highly conductive 3D printable materials available from several prominent methods of producing conductive traces. Key conducting materials demonstrated by 3D deposition, photocuring, and electrochemical approaches have been reviewed and discussed.
引用
收藏
页码:2423 / 2433
页数:11
相关论文
共 50 条
  • [41] Synthesized biocompatible and conductive ink for 3D printing of flexible electronics
    Farizhandi, Amir Abbas Kazemzadeh
    Khalajabadi, Shahrouz Zamani
    Krishnadoss, Vaishali
    Noshadi, Iman
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 110
  • [42] 3D wireless power transfer based on 3D printed electronics
    Hou, Tao
    Song, Yu
    Elkhuizen, Willemijn S.
    Jiang, Jiehui
    Geraedts, Jo M. P.
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2018, : 499 - 505
  • [43] A review on 3D printable food materials: types and development trends
    Li, Gaoshang
    Hu, Lingping
    Liu, Jialin
    Huang, Jiayin
    Yuan, Chunhong
    Takaki, Koichi
    Hu, Yaqin
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2022, 57 (01): : 164 - 172
  • [44] A theoretical model to predict the structural buildability of 3D printable concrete
    Prem, Prabhat Ranjan
    Ambily, P. S.
    Kumar, Shankar
    Ghodke, Swapnil Balasaheb
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2024, 28 (04) : 2661 - 2679
  • [45] Stress Relief: Improving Structural Strength of 3D Printable Objects
    Stava, Ondrej
    Vanek, Juraj
    Benes, Bedrich
    Carr, Nathan
    Mech, Radomir
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (04):
  • [46] Highly stretchable, 3D printable ionically conductive organohydrogel for long-time stable strain sensors
    Mogli, Giorgio
    Chiappone, Annalisa
    Roppolo, Ignazio
    Stassi, Stefano
    2024 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS, FLEPS 2024, 2024,
  • [47] Review of 3D printable hydrogels and constructs
    Li, Huijun
    Tan, Cavin
    Li, Lin
    MATERIALS & DESIGN, 2018, 159 : 20 - 38
  • [48] Rheological characterization of 3D printable geopolymers
    Ranjbar, Navid
    Mehrali, Mehdi
    Kuenzel, Carsten
    Gundlach, Carsten
    Pedersen, David Bue
    Dolatshahi-Pirouz, Alireza
    Spangenberg, Jon
    CEMENT AND CONCRETE RESEARCH, 2021, 147
  • [49] Mechanical characterization of 3D printable concrete
    Rahul, A., V
    Santhanam, Manu
    Meena, Hitesh
    Ghani, Zimam
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 227
  • [50] Test methods for 3D printable concrete
    Kaliyavaradhan, Senthil Kumar
    Ambily, P. S.
    Prem, Prabhat Ranjan
    Ghodke, Swapnil Balasaheb
    AUTOMATION IN CONSTRUCTION, 2022, 142