SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS

被引:68
|
作者
Ding, Xue [1 ,2 ]
Jiang, Tiefeng [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130023, Peoples R China
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
ANNALS OF APPLIED PROBABILITY | 2010年 / 20卷 / 06期
关键词
Random graph; random matrix; adjacency matrix; Laplacian matrix; largest eigenvalue; spectral distribution; semi-circle law; free convolution; SAMPLE COVARIANCE MATRICES; EIGENVALUE DISTRIBUTION; LARGE DEVIATIONS; DENSITY; STATES;
D O I
10.1214/10-AAP677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval almost surely; (iii) the empirical distributions of the eigenvalues of the Laplacian matrices converge weakly to the free convolution of the standard Gaussian distribution and the Wigner's semi-circular law; (iv) the empirical distributions of the eigenvalues of the adjacency matrices converge weakly to the Wigner's semi-circular law.
引用
收藏
页码:2086 / 2117
页数:32
相关论文
共 50 条
  • [41] On some spectral properties of large block Laplacian random matrices
    Ding, Xue
    STATISTICS & PROBABILITY LETTERS, 2015, 99 : 61 - 69
  • [42] Edge perturbation on graphs with clusters: Adjacency, Laplacian and signless Laplacian eigenvalues
    Cardoso, Domingos M.
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 113 - 128
  • [43] LAPLACIAN MATRICES OF GRAPHS - A SURVEY
    MERRIS, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 198 : 143 - 176
  • [44] Spectral Analysis for Adjacency Operators on Graphs
    Marius Măntoiu
    Serge Richard
    Rafael Tiedra de Aldecoa
    Annales Henri Poincaré, 2007, 8 : 1401 - 1423
  • [45] Spectral analysis for adjacency operators on graphs
    Mantoiu, Marius
    Richard, Serge
    de Aldecoa, Rafael Tiedra
    ANNALES HENRI POINCARE, 2007, 8 (07): : 1401 - 1423
  • [46] Equivalent Laplacian and adjacency quantum walks on irregular graphs
    Wong, Thomas G.
    Lockhart, Joshua
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [47] Generalized adjacency and Laplacian spectra of the weighted corona graphs
    Dai, Meifeng
    Shen, Junjie
    Dai, Lingfei
    Ju, Tingting
    Hou, Yongbo
    Su, Weiyi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 528
  • [48] LCD codes from adjacency matrices of graphs
    Key, J. D.
    Rodrigues, B. G.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2018, 29 (03) : 227 - 244
  • [49] ADAMS CONJECTURE FOR GRAPHS WITH CIRCULANT ADJACENCY MATRICES
    EGOROV, VN
    MARKOV, AI
    DOKLADY AKADEMII NAUK SSSR, 1979, 249 (03): : 529 - 532
  • [50] Eigenpairs of adjacency matrices of balanced signed graphs
    Chen, Mei-Qin
    SPECIAL MATRICES, 2024, 12 (01):