SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS

被引:68
|
作者
Ding, Xue [1 ,2 ]
Jiang, Tiefeng [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130023, Peoples R China
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
ANNALS OF APPLIED PROBABILITY | 2010年 / 20卷 / 06期
关键词
Random graph; random matrix; adjacency matrix; Laplacian matrix; largest eigenvalue; spectral distribution; semi-circle law; free convolution; SAMPLE COVARIANCE MATRICES; EIGENVALUE DISTRIBUTION; LARGE DEVIATIONS; DENSITY; STATES;
D O I
10.1214/10-AAP677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval almost surely; (iii) the empirical distributions of the eigenvalues of the Laplacian matrices converge weakly to the free convolution of the standard Gaussian distribution and the Wigner's semi-circular law; (iv) the empirical distributions of the eigenvalues of the adjacency matrices converge weakly to the Wigner's semi-circular law.
引用
收藏
页码:2086 / 2117
页数:32
相关论文
共 50 条
  • [31] The Signless Laplacian or Adjacency Spectral Radius of Bicyclic Graphs with Given Number of Cut Edges
    Hong, Zhen-Mu
    Fan, Yi-Zheng
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1473 - 1485
  • [32] The Signless Laplacian or Adjacency Spectral Radius of Bicyclic Graphs with Given Number of Cut Edges
    Zhen-Mu Hong
    Yi-Zheng Fan
    Graphs and Combinatorics, 2015, 31 : 1473 - 1485
  • [33] Hermitian Adjacency Matrices of Mixed Graphs
    Abudayah, Mohammad
    Alomari, Omar
    Sander, Torsten
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 841 - 855
  • [34] Invariant adjacency matrices of configuration graphs
    Abreu, M.
    Funk, M. J.
    Labbate, D.
    Napolitano, V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (08) : 2026 - 2037
  • [35] Adjacency matrices and chemical transformation graphs
    L. A. Gribov
    V. A. Dementiev
    I. V. Mikhailov
    Journal of Structural Chemistry, 2008, 49 : 197 - 200
  • [36] On Graphs with Zero Determinant of Adjacency Matrices
    徐寅峰
    董峰明
    应用数学, 1996, (02) : 254 - 255
  • [37] Skew-adjacency matrices of graphs
    Cavers, M.
    Cioaba, S. M.
    Fallat, S.
    Gregory, D. A.
    Haemers, W. H.
    Kirkland, S. J.
    McDonald, J. J.
    Tsatsomeros, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4512 - 4529
  • [38] Adjacency matrices of probe interval graphs
    Ghosh, Shamik
    Podder, Maitry
    Sen, Malay K.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (18) : 2004 - 2013
  • [39] The Adjacency Matrices of Complete and Nutful Graphs
    Sciriha, Irene
    Farrugia, Alexander
    Gauci, John Baptist
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2014, 72 (01) : 165 - 178
  • [40] Adjacency matrices and chemical transformation graphs
    Gribov, L. A.
    Dementiev, V. A.
    Mikhailov, I. V.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2008, 49 (02) : 197 - 200