SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS

被引:68
|
作者
Ding, Xue [1 ,2 ]
Jiang, Tiefeng [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130023, Peoples R China
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
ANNALS OF APPLIED PROBABILITY | 2010年 / 20卷 / 06期
关键词
Random graph; random matrix; adjacency matrix; Laplacian matrix; largest eigenvalue; spectral distribution; semi-circle law; free convolution; SAMPLE COVARIANCE MATRICES; EIGENVALUE DISTRIBUTION; LARGE DEVIATIONS; DENSITY; STATES;
D O I
10.1214/10-AAP677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval almost surely; (iii) the empirical distributions of the eigenvalues of the Laplacian matrices converge weakly to the free convolution of the standard Gaussian distribution and the Wigner's semi-circular law; (iv) the empirical distributions of the eigenvalues of the adjacency matrices converge weakly to the Wigner's semi-circular law.
引用
收藏
页码:2086 / 2117
页数:32
相关论文
共 50 条
  • [1] Spectra of adjacency and Laplacian matrices of inhomogeneous Erdos-Renyi random graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [2] On the Energy and Spread of the Adjacency, Laplacian and Signless Laplacian Matrices of Graphs
    Das, Kinkar Chandra
    Ghalavand, Ali
    Tavakoli, Mostafa
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 92 (03) : 545 - 566
  • [3] EMPIRICAL DISTRIBUTIONS OF LAPLACIAN MATRICES OF LARGE DILUTE RANDOM GRAPHS
    Jiang, Tiefeng
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (03)
  • [4] Nilpotent Adjacency Matrices and Random Graphs
    Schott, Rene
    Staples, George Stacey
    ARS COMBINATORIA, 2011, 98 : 225 - 239
  • [5] On the construction of cospectral graphs for the adjacency and the normalized Laplacian matrices
    Kannan, M. Rajesh
    Pragada, Shivaramakrishna
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 3009 - 3030
  • [6] CONSTRUCTION OF SIMULTANEOUS COSPECTRAL GRAPHS FOR ADJACENCY, LAPLACIAN AND NORMALIZED LAPLACIAN MATRICES
    Das, Arpita
    Panigrahi, Pratima
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (06): : 947 - 964
  • [7] NEW CLASSES OF SIMULTANEOUS COSPECTRAL GRAPHS FOR ADJACENCY, LAPLACIAN AND NORMALIZED LAPLACIAN MATRICES
    Das, A.
    Panigrahi, P.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02): : 303 - 323
  • [8] A note about cospectral graphs for the adjacency and normalized Laplacian matrices
    Butler, Steve
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 387 - 390
  • [9] Nilpotent adjacency matrices, random graphs and quantum random variables
    Schott, Rene
    Staples, George Stacey
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (15)
  • [10] Adjacency and transition matrices related to random walks on graphs
    Tomohiro Ikkai
    Hiromichi Ohno
    Yusuke Sawada
    Journal of Algebraic Combinatorics, 2022, 56 : 249 - 267