On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians

被引:7
|
作者
Kennedy, J. B. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
基金
澳大利亚研究理事会;
关键词
Laplacian; p-Laplacian; Isoperimetric problem; Shape optimisation; Robin boundary conditions; Wentzell boundary conditions; QUASILINEAR ELLIPTIC-EQUATIONS; BOUNDARY-CONDITIONS; MINIMIZATION; INEQUALITY;
D O I
10.1007/s00033-009-0052-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimising the kth eigenvalue, k >= 2, of the (p-)Laplacian with Robin boundary conditions with respect to all domains in R(N) of given volume. When k = 2, we prove that the second eigenvalue of the p-Laplacian is minimised by the domain consisting of the disjoint union of two balls of equal volume, and that this is the unique domain with this property. For p = 2 and k >= 3, we prove that in many cases a minimiser cannot be independent of the value of the constant in the boundary condition, or equivalently of the domain's volume. We obtain similar results for the Laplacian with generalised Wentzell boundary conditions.
引用
收藏
页码:781 / 792
页数:12
相关论文
共 50 条
  • [41] Isoperimetric Inequalities for Eigenvalues of the Laplace Operator
    Benguria, Rafael D.
    Linde, Helmut
    FOURTH SUMMER SCHOOL IN ANALYSIS AND MATHEMATICAL PHYSICS: TOPIC IN SPECTRAL THEORY AND QUANTUM MECHANICS, 2008, 476 : 1 - 40
  • [42] AN ISOPERIMETRIC INEQUALITY FOR LAPLACE EIGENVALUES ON THE SPHERE
    Karpukhin, Mikhail
    Nadirashvili, Nikolai
    Penskoi, Alexei, V
    Polterovich, Iosif
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 118 (02) : 313 - 333
  • [44] Extremals for eigenvalues of Laplacians under conformal mapping
    Laugesen, RS
    Morpurgo, C
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 155 (01) : 64 - 108
  • [45] EIGENVALUES FOR SYSTEMS OF FRACTIONAL p-LAPLACIANS
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (04) : 1077 - 1104
  • [46] Majorization bound for the eigenvalues of some graph laplacians
    Stephen, Tamon
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 303 - 312
  • [47] AN ISOPERIMETRIC PROBLEM
    PELLING, MJ
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (02): : 152 - 153
  • [48] Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions
    Velez-Santiago, Alejandro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (02) : 560 - 615
  • [49] The Robin function and its eigenvalues
    Dittmar, Bodo
    Hantke, Maren
    GEORGIAN MATHEMATICAL JOURNAL, 2007, 14 (03) : 403 - 417
  • [50] The isoperimetric problem
    Alladi Sitaram
    Resonance, 1997, 2 (9) : 65 - 68