On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians

被引:7
|
作者
Kennedy, J. B. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
基金
澳大利亚研究理事会;
关键词
Laplacian; p-Laplacian; Isoperimetric problem; Shape optimisation; Robin boundary conditions; Wentzell boundary conditions; QUASILINEAR ELLIPTIC-EQUATIONS; BOUNDARY-CONDITIONS; MINIMIZATION; INEQUALITY;
D O I
10.1007/s00033-009-0052-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimising the kth eigenvalue, k >= 2, of the (p-)Laplacian with Robin boundary conditions with respect to all domains in R(N) of given volume. When k = 2, we prove that the second eigenvalue of the p-Laplacian is minimised by the domain consisting of the disjoint union of two balls of equal volume, and that this is the unique domain with this property. For p = 2 and k >= 3, we prove that in many cases a minimiser cannot be independent of the value of the constant in the boundary condition, or equivalently of the domain's volume. We obtain similar results for the Laplacian with generalised Wentzell boundary conditions.
引用
收藏
页码:781 / 792
页数:12
相关论文
共 50 条
  • [31] Isoperimetric Inequalities for Eigenvalues of Triangles
    Siudeja, Bartlomiej
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) : 1097 - 1120
  • [32] Estimates for eigenvalues of the Wentzell-Laplace operator
    Du, Feng
    Wang, Qiaoling
    Xia, Changyu
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 : 25 - 33
  • [33] Tunneling between corners for Robin Laplacians
    Helffer, Bernard
    Pankrashkin, Konstantin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 225 - 248
  • [34] Isoperimetric Inequalities for Eigenvalues of the Laplacian
    Benguria, Rafael D.
    ENTROPY AND THE QUANTUM II, 2011, 552 : 21 - 60
  • [35] EIGENVALUES OF COLLAPSING DOMAINS AND DRIFT LAPLACIANS
    Lu, Zhiqin
    Rowlett, Julie
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (03) : 627 - 648
  • [36] Absence of embedded eigenvalues for Riemannian Laplacians
    Ito, K.
    Skibsted, E.
    ADVANCES IN MATHEMATICS, 2013, 248 : 945 - 962
  • [37] Higher Robin eigenvalues for the p-Laplacian operator as p approaches 1
    de Lis, Jose C. Sabina
    de Leon, Sergio Segura
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [38] Isoperimetric Sets for Weighted Twisted Eigenvalues
    Barbara Brandolini
    Antoine Henrot
    Anna Mercaldo
    Maria Rosaria Posteraro
    The Journal of Geometric Analysis, 2023, 33
  • [39] Isoperimetric Sets for Weighted Twisted Eigenvalues
    Brandolini, Barbara
    Henrot, Antoine
    Mercaldo, Anna
    Posteraro, Maria Rosaria
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (11)
  • [40] On the Discrete Spectrum of Robin Laplacians in Conical Domains
    Pankrashkin, K.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (02) : 100 - 110