Window-matching techniques with Kalman filtering for an improved object visual tracking

被引:0
|
作者
Vidal, Flavio B. [1 ]
Casanova Alcalde, Victor H. [1 ]
机构
[1] Univ Brasilia, Dept Elect Engn, BR-70910900 Brasilia, DF, Brazil
来源
2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1-3 | 2007年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development and application of an algorithm for object visual tracking from a sequence of images. The algorithm is based on window-matching techniques using the sum of squared differences (SSD) as a distance-similarity measure, but adding stochastic filtering. The algorithm is then applied for tracking: a vehicle on an urban environment; two people meeting and walking together; a ball on a ping-pong game. It is concluded that incorporating the Kalman filtering greatly improves the tracking performance.
引用
收藏
页码:933 / 938
页数:6
相关论文
共 50 条
  • [31] Target Tracking Based on Mean Shift and Improved Kalman Filtering Algorithm
    Chu, Hongxia
    Wang, Kejun
    2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS ( ICAL 2009), VOLS 1-3, 2009, : 808 - 812
  • [32] Applying mean shift, motion information and Kalman filtering approaches to object tracking
    Mazinan, Amir Hooshang
    Amir-Latifi, Arash
    ISA TRANSACTIONS, 2012, 51 (03) : 485 - 497
  • [33] Segmentation-based object tracking using image warping and Kalman filtering
    Huang, Y
    Huang, TS
    Niemann, H
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 601 - 604
  • [34] The research of multi-object tracking algorithm using Kalman filtering method
    Liu S.
    International Journal of Innovative Computing and Applications, 2019, 10 (02): : 107 - 114
  • [35] A New Visual Object Tracking Algorithm Using Bayesian Kalman Filter
    Zhang, Shuai
    Chan, S. C.
    Liao, Bin
    Tsui, K. M.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 522 - 525
  • [36] Real Time Object Detection and Tracking: Histogram Matching and Kalman Filter Approach
    Mehta, Madhur
    Goyal, Chandni
    Srivastava, M. C.
    Jain, R. C.
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 5, 2010, : 796 - 801
  • [37] Object Tracking Algorithm Based on Combination of Dynamic Template Matching and Kalman Filter
    Zheng, Bin
    Xu, Xiangyang
    Dai, Yaping
    Lu, Yuanyuan
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2012, : 136 - 139
  • [38] A Visual Object Tracking Algorithm Based on Improved TLD
    Zhen, Xinxin
    Fei, Shumin
    Wang, Yinmin
    Du, Wei
    ALGORITHMS, 2020, 13 (01)
  • [39] Visual Odometry Based on Improved Feature Matching and Unscented Kalman Filter
    Yu Huan
    Xie Ling
    Chen Jiabin
    Song Chunlei
    Fei Guo
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 5446 - 5450
  • [40] Multi-feature visual tracking using adaptive unscented Kalman filtering
    Song, Jiasheng
    Hu, Guoqing
    2013 SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2013, : 197 - 200