Window-matching techniques with Kalman filtering for an improved object visual tracking

被引:0
|
作者
Vidal, Flavio B. [1 ]
Casanova Alcalde, Victor H. [1 ]
机构
[1] Univ Brasilia, Dept Elect Engn, BR-70910900 Brasilia, DF, Brazil
来源
2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1-3 | 2007年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development and application of an algorithm for object visual tracking from a sequence of images. The algorithm is based on window-matching techniques using the sum of squared differences (SSD) as a distance-similarity measure, but adding stochastic filtering. The algorithm is then applied for tracking: a vehicle on an urban environment; two people meeting and walking together; a ball on a ping-pong game. It is concluded that incorporating the Kalman filtering greatly improves the tracking performance.
引用
收藏
页码:933 / 938
页数:6
相关论文
共 50 条
  • [21] Learning Spatial Fusion and Matching for Visual Object Tracking
    Xiao, Wei
    Zhang, Zili
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 352 - 367
  • [22] Robust Visual Tracking with Reliable Object Information and Kalman Filter
    Chen, Hang
    Zhang, Weiguo
    Yan, Danghui
    SENSORS, 2021, 21 (03) : 1 - 18
  • [23] Object Tracking Using Improved Meanshift Algorithm Combined with Kalman Filter on Independent Visual Robotic Fish
    Shi, Haihua
    Xiang, Wei
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 1030 - 1033
  • [24] Point Matching Estimation for Moving Object Tracking Based on Kalman Filter
    Zeng, Wei
    Zhu, Guibin
    Li, Yao
    PROCEEDINGS OF THE 8TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, 2009, : 1115 - 1119
  • [25] Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking
    Yang, Haoran
    Wang, Juanjuan
    Miao, Yi
    Yang, Yulu
    Zhao, Zengshun
    Wang, Zhigang
    Sun, Qian
    Wu, Dapeng Oliver
    MATHEMATICS, 2019, 7 (11)
  • [26] Kalman Filtering and Bipartite Matching Based Super-Chained Tracker Model for Online Multi Object Tracking in Video Sequences
    Qureshi, Shahzad Ahmad
    Hussain, Lal
    Chaudhary, Qurat-ul-ain
    Abbas, Syed Rahat
    Khan, Raja Junaid
    Ali, Amjad
    Al-Fuqaha, Ala
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [27] Object Localization and Tracking System Using Multiple Ultrasonic Sensors with Newton-Raphson Optimization and Kalman Filtering Techniques
    Juan, Chung-Wei
    Hu, Jwu-Sheng
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [28] A real-time visual object tracking system based on Kalman filter and MB-LBP feature matching
    Zebin Cai
    Zhenghui Gu
    Zhu Liang Yu
    Hao Liu
    Ke Zhang
    Multimedia Tools and Applications, 2016, 75 : 2393 - 2409
  • [29] A real-time visual object tracking system based on Kalman filter and MB-LBP feature matching
    Cai, Zebin
    Gu, Zhenghui
    Yu, Zhu Liang
    Liu, Hao
    Zhang, Ke
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (04) : 2393 - 2409
  • [30] Visual object tracking via iterative ant particle filtering
    Wang, Fasheng
    Wang, Yanbo
    He, Jianjun
    Sun, Fuming
    Li, Xucheng
    Zhang, Junxing
    IET IMAGE PROCESSING, 2020, 14 (08) : 1636 - 1644